簡易檢索 / 詳目顯示

研究生: 邱鴻志
Chiu, Hung Chih
論文名稱: Intelligent Biomedical Systems: Electronics, Signal Processing, and Informatics
智慧型生醫系統: 生醫電子, 訊號處理與生醫信息
指導教授: 馬席彬
Ma, Hsi Pin
口試委員: 何奕倫
Ho, Yi Lwun
張兗君
Chang, Yen Chung
林彥宏
Lin, Yen Hung
黃柏鈞
Huang, Po Chiun
黃朝宗
Huang, Chao Tsung
吳炤民
Wu, Chao Min
羅孟宗
Lo, Men Tzung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 163
中文關鍵詞: 閉迴路神經刺激數位訊號處理相位同步即時刺激複雜度分析心律變異度多尺度摘去趨勢波動分析方法
外文關鍵詞: Closed-loop neural stimulation, Digital signal processing, Phase synchronization, Real-time stimulation, Complexity, Heart rate variability, Multiscale entropy, Detrended fluctuation analysis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物醫學系統在近幾年已經被快速的研究和討論,並且廣泛的應用至人類生活中。在這生物科學快速發展的世紀,許多在醫學工程領域的研究人員開發出許多新的診斷和治療工具於特定的疾病上,像是提出新的醫療電子電路架構或訊號處理演算法來輔助診斷或治療人類的疾病。
    醫療儀器像是一個媒介連接著生物和電子,主要用來量化和擷取其生物特徵或行為模式,並進一步探討生物演進和變化的過程。一般來說,典型的醫療儀器由前端感測器傳遞生物特性後,再由類比訊號放大器和類比數位轉換器將類比訊號轉換成數位訊號,轉換後的數位訊號可以直接在硬體上執行訊號特徵擷取之外也可以傳送至電腦做長時間的資料儲存或高準確性的數學運算和分析,而資料的傳送方式可依據應用的需求選擇有線或無線的傳輸。舉例來說,我們提出了一個即時的閉迴路刺激系統,此系統結合數位訊號處理以及信息資料分析方法,分析後的訊號特徵可透過無線藍芽傳輸與行動裝置連結。另外,閉迴路系統啟動刺激器的條件可透過數位核心電路即時運算腦神經訊號相位同步的特性後,控制前端類比刺激電路,此方法的好處可降低70.1%的刺激器電量消耗,也可以降低整體系統的功率消耗,延長電池的使用壽命。
    在本篇論文中,電子訊號的輸出從類比電路的訊號處理、類比訊號數位化至數位訊號處理,其中數位訊號處理的方法可分為瞬時傅立葉轉換(short-time Fourier Transform)、相位同步分析、心律變異度的線性分析、多尺度摘分析(multiscale entropy)和去趨勢波動分析方法(detrended fluctuation analysis)。基本上瞬時傅立葉轉換和相位同步分析主要用來分析短時間內的電生理訊號變化特性,而心律變異度的線性分析方法主要可分為時間和頻率領域的分析,除了線性分析方法之外本論文也採用兩種新開發的非線性分析方法,第一種為多尺度摘分析方法,可提供連續時間資料序列的規律圖型分析,可有效的量化單獨訊號之間的相關性、複雜度和相互作用關係。第二種方法為去趨勢波動分析,主要分析電訊號中的碎形特性來量化生理訊號。最後上述的各種訊號分析參數都可以透過統計方法來驗證其結果和關聯性,並且可建立數學模型去預測電生理訊號未來的特性。例如,本論文使用change-score analysis和generalized additive models的統計方法,結合分析後的電生理訊號參數,透過回歸模型的分析和機器學習的技術(machine learning technique)來評估人體放鬆狀態,除此之外,為了更進一步的與穿戴式裝置整合,本論文還提出了僅需要使用心電訊號就能達到初步的生理狀態分析的數學模型。
    總結本論文討論的內容包含生醫系統的電子電路、訊號處理模組和生醫信息,首先將電子電路中用來量測電訊號的類比電路和數位電路整合成積體電路,可有效縮小系統設計的面積和功率消耗,因此所開發與選擇的演算法條件都必須符合低複雜度、低運算時間以及高準確性。除此之外,數位電路內有包含微處理器可讓訊號處理的演算法在設計過程中更有彈性和可適應性。最後分析出來的電訊號特性都有透過統計分析檢定,並估測運算後的生醫訊號指標參數和臨床信息之間的關聯性與顯著性,雖然這些參數都有可能會受到外在雜訊或者人為因素的干擾而產生誤差,但是本論文使用多變數選擇演算法可以準確的挑出對於數學模型內最有意義的參數使用,同時在實驗中也給予生醫系統設計過程使用的變數與定義給予適當的限制,避免過度擬合(overfitting)。最後本論文共提出兩種實驗結果,第一種為即時閉迴路腦神經相位同步偵測系統,其特性已在上述段落描述,另外一個實驗為生醫信息資料分析,主要透過腦電訊號和心電訊號分析後的指標參數建立可預測人體放鬆狀態的數學模型,此模型內共使用兩種分析方法為change-score analysis和generalized additive models,準確率分別為80.7%和86.5%。


    Biomedical systems have expanded markedly in recent years, spreading to most aspects of human life. In promoting rapid advancements in biological science, which have led to the creation of novel electrical circuits and signal processing methods for developing tools for diagnosing and treating human diseases, several researchers in biomedical engineering have developed new tools for specific medical conditions.
    Electronic instruments provide an interface between biology and electronics. Such interfaces enable quantifying and characterizing biological phenomena, which can then be investigated to elucidate biological processes. A typical interface comprises a sensor or electrode for detecting biological parameters, the signals of which can then be amplified and converted into the digital domain. These digital data can be processed by hardware or transferred to a personal computer for long-term storage and more accurate signal processing. Depending on the application requirements, the data can be transferred through a wired or wireless link. For instance, we propose a real-time closed-loop neurostimulation system and off-line bioinformatics data-analysis method. A neurostimulation system can be measured on the basis of neural phase synchrony by using real-time electrical processing. In addition, the closed-loop phase synchrony detection requires 70.1% electrical energy to be delivered to the deep brain, which can reduce the system power consumption and extend the battery life.
    The electrical signals output from an analog circuit are processed by signal processing through a data acquisition unit, signal conditioning block, and digital signal processing program. In this dissertation, the digital signal processing program features a short-time Fourier transform, phase coherence analysis, linear analysis of heart rate variability, multiscale entropy analysis, and detrended fluctuation analysis. The short-time Fourier transform and phase coherence analysis were used to determine the bioelectrical activity of an object. Analysis of linear heart rate variability, which represents one of the most promising autonomic activity markers, was performed in the time and frequency domains. In addition to conducting a linear analysis, we also propose two innovative analysis methods derived from nonlinear and nonstationary processes. The first method is a multiscale entropy measurement that provides the regularity pattern of a time series by analyzing the interplay between quantitative connotations and the correlations among individual electrical signals. The second method, detrended fluctuation analysis, is employed to evaluate the fractal correlations causing heart rate fluctuations that originate from the interactive regulatory mechanisms. Moreover, most processed biometric signals can be statistically analyzed to estimate effects and predict outcomes. For example, this dissertation presents a method requiring purely biometric values derived from a regression model and machine learning technique, which are referred to as change-score analysis and generalized additive models (GAMs), to evaluate relaxing states. Furthermore, considering the practical applications for wearable sensor nodes, EEG data obtained before stress were not used in the change-score analysis.
    A biomedical system comprising electronic instruments, signal processing modules, and bioinformatics is discussed in this dissertation. The analog front end and digital circuits for detecting and acquiring electrical signals were developed using integrated circuits. The guidelines for developing the signal processing algorithms were low complexity, short latency, high sensitivity, and accurate characterization. Additionally, a microprocessor was used to ensure that the electronic algorithm design is flexible and adaptable. Finally, a statistical analysis method for estimating the correlations between biometric values and clinical informatics is presented. Even when the parameters are irregular and change in the external environment, the variable selection method can accurately extract the signals of interest. In this dissertation, the experimental results of the biomedical system were compared with various performance criteria. The comparison showed that the proposed real-time closed-loop neurostimulation system attains the required low energy for stimulating deep brain activity. In the bioinformatics data analysis, the change-score analysis and GAMs respectively achieved an overall accuracy of 80.7% and 86.5% in recognizing changes in brain waves.

    Abstract 1 Introduction 1.1 Research Background . . . . . 1 1.2 Research Motivations . . . . .2 1.3 Dissertation Organization . . . . . 6 2 Biomedical System Design: Technology Perspectives 2.1 Sources of Biomedical Signals . . . . . 7 2.2 Basic Biomedical Instrumentation Systems . . . . .8 2.3 Performance Requirements for Analog Frontends . . . . .11 2.3.1 Amplifier . . . . .12 2.3.2 A/D converter . . . . .14 2.3.3 Stimulator . . . . .16 2.4 Digital Integrated Circuit Design . . . . .19 2.5 Biomedical Signal Measurement and Processing . . . . .23 2.6 System Design Choices, Strategies, and Constraints . . . . . 25 2.7 Challenges in Biomedical System Design . . . . . 26 3 Biomedical Digital Signal Processing and Meta-analysis 3.1 Introduction . . . . .29 3.2 A Lossless Data Compression . . . . . 29 3.3 Stationary Analysis . . . . .34 3.3.1 Short-time Fourier Transformation . . . . .34 3.3.2 Phase Coherence . . . . .36 3.3.3 Linear Heart Rate Variability (HRV) Analysis Methods . . . . . 38 3.4 Non-stationary Analysis . . . . .38 3.4.1 Multiscale Entropy Analysis . . . . . 39 3.4.2 Detrended Fluctuation Analysis . . . . .40 3.5 Meta-analysis . . . . .41 3.5.1 Variable Selection. . . . .41 3.5.2 Change-score Analysis. . . . . 45 3.5.3 Generalized Additive Models . . . . . 46 3.6 Discussion . . . . .47 4 Case Study I: An Intelligent Brain Machine Interface 4.1 Introduction. . . . . 49 4.2 FPGA Verification System Design and Results. . . . .50 4.2.1 Digital Integrated Systems . . . . .50 4.2.2 Prototyping and Graphical User Interface . . . . .56 4.2.3 An In-Vivo Experiment. . . . . 57 4.3 ASIC Design and Simulation Results . . . . .61 4.3.1 System Level Design Strategies. . . . . 61 4.3.2 ASIC Simulation Results . . . . .69 4.3.3 Chip Measurements . . . . .72 4.3.4 Comparison with Other Studies . . . . .75 4.4 A Real-time Closed-loop System Design and Results. . . . .77 4.4.1 System Architecture. . . . .78 4.4.2 Closed-loop Control Policies. . . . .80 4.4.3 Experimental Setup for Deep Brain Stimulation . . . . .82 4.4.4 Data Collection . . . . .83 4.4.5 Statistical Results . . . . .85 4.4.6 Phase Synchronization Detection in the EEG Dataset . . . . .86 4.4.7 Performance and Latency Analysis. . . . .88 4.4.8 Comparison with Other Studies . . . . . 90 4.5 Case Study Limitations . . . . .92 4.6 Discussion . . . . .92 5 Case Study II: Examination of Physiological States with HRV and Electroencephalography 5.1 Introduction . . . . .95 5.2 Meta-analysis System . . . . .97 5.3 EEG Signal Processing. . . . .99 5.4 Clinical Information. . . . .101 5.5 Serum Neurotransmitter Measurements and ECG/EEG Parameters. . . . .106 5.6 p-Value-Based Modeling for Prediction. . . . .110 5.6.1 Change-score Analysis (CSA) . . . . .110 5.6.2 Change-score Analysis using Generalized Additive Models (CSAGAM) . . . . .111 5.6.3 Change-score Analysis using Generalized Additive Models without EEG Data Obtained before Stress (CSA-GAM(without EEG)) . . . . .113 5.7 AIC-Based Modeling for Prediction. . . . .115 5.7.1 Change-score Analysis (CSA) . . . . .115 5.7.2 Change-score Analysis using Generalized Additive Models (CSAGAM) . . . . .116 5.7.3 Change-score Analysis using Generalized Additive Models without EEG Data Obtained before Stress (CSA-GAM(without EEG)) . . . . 117 5.8 Regression Calibration. . . . .118 5.9 Case Study Limitations. . . . .120 5.10 Discussion . . . . .120 6 Conclusions and Future Prospects 6.1 Conclusions . . . . .123 6.2 Future Prospects. . . . . 124 A A Meta-analysis Experimental Results: Spearman’s rank Correlation B Generalized Additive Models

    [1] S. Park and S. Jayaraman, “Enhancing the quality of life through wearable technology,”Engineering in Medicine and Biology Magazine, vol. 22, no. 3, pp. 41–48, 2003.
    [2] B. Gyselinckx, C. Van Hoof, J. Ryckaert, R. F. Yazicioglu, P. Fiorini, and V. Leonov,
    “Human++: autonomous wireless sensors for body area networks,” in Custom Integrated
    Circuits Conference, 2005, pp. 13–19.
    [3] C. W. Mundt, K. N. Montgomery, U. E. Udoh, V. N. Barker, G. C. Thonier, A. M.
    Tellier, R. D. Ricks, B. B. Darling, Y. D. Cagle, N. A. Cabrol, S. J. Ruoss, J. L. Swain,
    J. W. Hines, and G. T. A. Kovacs, “A multiparameter wearable physiologic monitoring ystem for space and terrestrial applications,” IEEE Trans. Inf. Technol. Biomed., vol. 9,
    no. 3, pp. 382–391, 2005.
    [4] W. Agnew and D. McCreery, Neural Prostheses: Fundamental Studies. Prentice Hall,
    1990.
    [5] M. A. Lebedev and M. A. L. Nicolelis, “Brainmachine interfaces: past, present and future,” Trends in Neurosciences, vol. 29, no. 9, pp. 536–546, 2006.
    [6] A. J. Casson, D. C. Yates, S. Patel, and E. Rodriguez-Villegas, “Algorithm for eeg data selection leading to wireless and long term epilepsy monitoring,” in Engineering in
    Medicine and Biology Society, 2007, pp. 2456–2459.
    [7] C. Peng, D. J. Young, B. Hoit, and W. H. Ko, “Novel long-term implantable blood pressure monitoring system with reduced baseline drift,” in Engineering in Medicine and Biology Society, 2006, pp. 1854–1857.
    [8] S. Sarkar, D. Ritscher, and R. Mehra, “A detector for a chronic implantable atrial tachyarrhythmia monitor,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 3, pp. 1219–1224, 2008.
    [9] G. RD, “The electrode: A measurement systems viewpoint,” In Biomedical Electrode Technology Theory and Practice. Edited by Miller HA. Harrison DC: Academic Press Inc, 1974.
    [10] J. McCreary and P. Gray, “All-mos charge redistribution analog-to-digital conversion techniques,” IEEE J. Solid-State Circuits, vol. 10, no. 6, pp. 371–379, 1975.
    [11] P. de Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic classification of heartbeats using ecg morphology and heartbeat interval features,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 7, pp. 1196–1206, 2004.
    [12] R. DC, Biomedical Signal Processing: Principles and Techniques. McGraw-Hill Education (India) Pvt Limited, 2005.
    [13] M. Steffen, A. Aleksandrowicz, and S. Leonhardt, “Mobile noncontact monitoring of heart and lung activity,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 4, pp. 250–257, 2007.
    [14] Y. Hung-Chieh and T. Shu-Ming, “A wireless based sensor for patient monitoring system with remote diagnostic,” in Networking and Services, 2007, pp. 92–92.
    [15] A. Stammermann, L. Kruse, W. Nebel, A. Pratsch, E. Schmidt, M. Schulte, and A. Schulz, “System level optimization and design space exploration for low power,” in The 14th International Symposium on System Synthesis, 2001, pp. 142–146.
    [16] E. Nemati, M. J. Deen, and T. Mondal, “A wireless wearable ecg sensor for long-term applications,” IEEE Communications Magazine, vol. 50, no. 1, pp. 36–43, 2012.
    [17] T. Jochum, T. Denison, and P. Wolf, “Integrated circuit amplifiers for multi-electrode intracortical recording,” J Neural Eng, vol. 6, no. 1, p. 012001, 2009.

    [18] R. C. Gesteland, B. Howland, J. Y. Lettvin, and W. H. Pitts, “Comments on microelectrodes,” Proceedings of the IRE, vol. 47, no. 11, pp. 1856–1862, 1959.
    [19] G. Perlin, A. Sodagar, and K. Wise, “Neural recording front-end designs for fully implantable neuroscience applications and neural prosthetic microsystems,” in Engineering in Medicine and Biology Society, 2006, pp. 2982–2985.
    [20] R. Harrison, “A versatile integrated circuit for the acquisition of biopotentials,” in Custom Integrated Circuits Conference, Sept 2007, pp. 115–122.
    [21] A. Lozano, P. Gildenberg, and R. Tasker, Textbook of Stereotactic and Functional Neurosurgery, ser. Textbook of Stereotactic and Functional Neurosurgery. Springer, 2009.
    [22] K. Kultas-Ilinsky and I. A. Ilinsky, Basal Ganglia and Thalamus in Health and Movement Disorders, ser. Basal Ganglia and Thalamus in Health and Movement Disorders. Springer, 2001.
    [23] J. Lopez-Azcarate, M. Tainta, M. C. Rodriguez-Oroz, M. Valencia, R. Gonzalez, J. Guridi, J. Iriarte, J. A. Obeso, J. Artieda, and M. Alegre, “Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in parkinson’s disease,” J Neurosci, vol. 30, no. 19, pp. 6667–77,
    2010.
    [24] C. Loukas and P. Brown, “A pc-based system for predicting movement from deep brain signals in parkinson’s disease,” Computer Methods and Programs in Biomedicine, vol. 107, no. 1, pp. 36–44, 2012.
    [25] R. de Haas, R. Struikmans, G. van der Plasse, L. van Kerkhof, J. H. Brakkee, M. J. H. Kas, and H. G. M. Westenberg, “Wireless implantable micro-stimulation device for high frequency bilateral deep brain stimulation in freely moving mice,” Journal of Neuroscience Methods, vol. 209, no. 1, pp. 113–119, 2012.
    [26] M. J. Burke and D. T. Gleeson, “A micropower dry-electrode ecg preamplifier,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 2, pp. 155–162, 2000.

    [27] E. M. Spinelli, N. Martinez, M. A. Mayosky, and R. Pallas-Areny, “A novel fully differential
    biopotential amplifier with dc suppression,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 8, pp. 1444–1448, 2004.
    [28] R. R. Harrison and C. Charles, “A low-power low-noise cmos amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–965, 2003.
    [29] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, “A low-power integrated circuit for a wireless 100-electrode neural
    recording system,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 123–133, 2007.
    [30] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue, “Neuronal ensemble control of prosthetic devices by a human with tetraplegia,” Nature, vol. 442, no. 7099, pp. 164–171, 2006.
    [31] L. A. Koyrakh, “Data compression for implantable medical devices,” in Computers in Cardiology, 2008, pp. 417–420.
    [32] L. Yu-Po, C. Hung-Chih, H. Pin-Yang, W. Zong-Ye, C. Hsiang-Hui, H. Po-Chiun, T. Kea-Tiong, M. Hsi-Pin, and C. Hsin, “An implantable microsystem for long-term study on the mechanism of deep brain stimulation,” in Biomedical Circuits and Systems Conference, 2013, pp. 274–277.
    [33] Y. Chun-Yi, C. Hung-Chih, and M. Hsi-Pin, “An information hub for implantable wireless brain machine interface,” in International Symposium on VLSI Design, Automation, and Test, 2013, pp. 1–4.
    [34] D. C. Suresh, B. Agrawal, W. Najjar, and Y. Jun, “A tunable bus encoder for off-chip data buses,” in Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005, pp. 319–322.
    [35] A. M. Kamboh, M. Raetz, K. G. Oweiss, and A. Mason, “Area-power efficient vlsi implementation of multichannel dwt for data compression in implantable neuropros thetics,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 2, pp. 128–135, 2007.
    [36] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
    [37] N. Macmillan and C. Creelman, Detection Theory: A User’s Guide. Taylor and Francis, 2004.
    [38] T. P. Exarchos, A. T. Tzallas, D. I. Fotiadis, S. Konitsiotis, and S. Giannopoulos, “Eeg transient event detection and classification using association rules,” IEEE Transactions on Information Technology in Biomedicine, vol. 10, no. 3, pp. 451–457, 2006.
    [39] K. Iniewski, CMOS Biomicrosystems: Where Electronics Meet Biology. Wiley, 2011.
    [40] H. Yamu and M. Sawan, “Cmos front-end amplifier dedicated to monitor very low amplitude signal from implantable sensors,” in IEEE Midwest Symposium on Circuits and Systems, vol. 1, 2000.
    [41] P. Y. Robert, B. Gosselin, A. E. Ayoub, and M. Sawan, “An ultra-low-power successiveapproximation- based adc for implantable sensing devices,” in IEEE International Midwest Symposium on Circuits and Systems, vol. 1, 2006, pp. 7–11.
    [42] K. Abdelhalim, L. MacEachern, and S. Mahmoud, “A nanowatt successive approximation adc with offset correction for implantable sensor applications,” in IEEE International Symposium on Circuits and Systems, 2007, pp. 2351–2354.
    [43] P. D. Bradley, “An ultra low power, high performance medical implant communication system (mics) transceiver for implantable devices,” in Biomedical Circuits and Systems Conference, 2006, pp. 158–161.
    [44] D. Panescu, “Emerging technologies [wireless communication systems for implantable medical devices],” Engineering in Medicine and Biology Magazine, vol. 27, no. 2, pp. 96–101, 2008.

    [45] C. Bigan and M. S. Woolfson, “Time-frequency analysis of short segments of biomedical data,” IEEE Proceedings-Science Measurement and Technology, vol. 147, no. 6, pp. 368–373, 2000.
    [46] P. J. Durka, J. Zygierewicz, H. Klekowicz, J. Ginter, and K. J. Blinowska, “On the statistical significance of event-related eeg desynchronization and synchronization in the time-frequency plane,” IEEE Transactions on Biomedical Engineering, vol. 51,
    no. 7, pp. 1167–1175, 2004.
    [47] A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis, “Epileptic seizure detection in eegs using time-frequency analysis,” IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 5, pp. 703–710, 2009.
    [48] G. Valenza, M. Nardelli, A. Lanata, C. Gentili, G. Bertschy, R. Paradiso, and E. P. Scilingo, “Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis,” IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 5, pp. 1625–1635, 2014.
    [49] A. J. Camm, M. Malik, J. T. Bigger, G. Breithardt, S. Cerutti, R. J. Cohen, P. Coumel,
    E. L. Fallen, H. L. Kennedy, R. E. Kleiger, F. Lombardi, A. Malliani, A. J. Moss, J. N.
    Rottman, G. Schmidt, P. J. Schwartz, and D. Singer, “Heart rate variability – standards of measurement, physiological interpretation, and clinical use,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996.
    [50] K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, “Application of higher order statistics/spectra in biomedical signals-a review,” Medical Engineering and Physics, vol. 32, no. 7, pp. 679–689, 2010.
    [51] M. K. Das, C. Saha, H. El Masry, J. Peng, G. Dandamudi, J. Mahenthiran, P. McHenry, and D. P. Zipes, “Fragmented qrs on a 12-lead ecg: a predictor of mortality and cardiac events in patients with coronary artery disease,” Heart Rhythm, vol. 4, no. 11, pp. 1385– 92, 2007.

    [52] F. Nilsson, M. Stridh, A. Bollmann, and L. Sornmo, “Predicting spontaneous termination of atrial fibrillation using the surface ecg,” Medical Engineering and Physics, vol. 28, no. 8, pp. 802–808, 2006.
    [53] P. E. Dilaveris, E. J. Gialafos, G. K. Andrikopoulos, D. J. Richter, V. Papanikolaou, K. Poralis, and J. E. Gialafos, “Clinical and electrocardiographic predictors of recurrent atrial fibrillation,” Pace-Pacing and Clinical Electrophysiology, vol. 23, no. 3, pp. 352– 358, 2000.
    [54] P.-F. Lin, M.-T. Lo, J. Tsao, Y.-C. Chang, C. Lin, and Y.-L. Ho, “Correlations between the signal complexity of cerebral and cardiac electrical activity: A multiscale entropy analysis,” Plos One, vol. 9, no. 2, 2014.
    [55] A. J. Camm, M. Malik, J. T. Bigger, G. Breithardt, S. Cerutti, R. J. Cohen, P. Coumel, E. L. Fallen, H. L. Kennedy, R. E. Kleiger, F. Lombardi, A. Malliani, A. J. Moss, J. N. Rottman, G. Schmidt, P. J. Schwartz, and D. Singer, “Heart rate variability – standards of measurement, physiological interpretation, and clinical use,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996.
    [56] U. Rajendra Acharya, K. Paul Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, “Heartrate variability: a review,” Med Biol Eng Comput, vol. 44, no. 12, pp. 1031–51, 2006.
    [57] S.-C. Tang, H.-I. Jen, Y.-H. Lin, C.-S. Hung, W.-J. Jou, P.-W. Huang, J.-S. Shieh, Y.- L. Ho, D.-M. Lai, A.-Y. Wu, J.-S. Jeng, and M.-F. Chen, “Complexity of heart rate variability predicts outcome in intensive care unit admitted patients with acute stroke,” Journal of Neurology Neurosurgery and Psychiatry, vol. 86, no. 1, pp. 95–100, 2015.
    [58] Y.-L. Ho, C. Lin, Y.-H. Lin, and M.-T. Lo, “The prognostic value of non-linear analysis of heart rate variability in patients with congestive heart failure-a pilot study of multiscale entropy,” Plos One, vol. 6, no. 4, 2011.
    [59] G. Valenza, M. Nardelli, G. Bertschy, A. Lanata, and E. P. Scilingo, “Mood states modulate complexity in heartbeat dynamics: A multiscale entropy analysis,” Epl, vol. 107, no. 1, 2014.

    [60] G. Valenza, L. Citi, A. Lanata, E. P. Scilingo, and R. Barbieri, “Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics,” Scientific Reports, vol. 4, 2014.
    [61] D. S. Quintana, A. J. Guastella, T. Outhred, I. B. Hickie, and A. H. Kemp, “Heart rate variability is associated with emotion recognition: Direct evidence for a relationship between the autonomic nervous system and social cognition,” International Journal of Psychophysiology, vol. 86, no. 2, pp. 168–172, 2012.
    [62] M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of biological signals,” Physical Review E, vol. 71, no. 2, 2005.
    [63] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” Am J Physiol Heart Circ Physiol, vol. 278, no. 6, 2000.
    [64] M. Costa, A. A. Priplata, L. A. Lipsitz, Z. Wu, N. E. Huang, A. L. Goldberger, and C. K. Peng, “Noise and poise: Enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy,” Epl, vol. 77, no. 6, 2007.
    [65] H. V. Huikuri and T. H. Mkikallio, “Heart rate variability in ischemic heart disease,” Autonomic Neuroscience, vol. 90, no. 12, pp. 95–101, 2001.
    [66] C. K. Peng, S. Havlin, J. M. Hausdorff, J. E. Mietus, H. E. Stanley, and A. L. Goldberger, “Fractal mechanisms and heart rate dynamics - long-range correlations and their breakdown with disease,” Journal of Electrocardiology, vol. 28, pp. 59–65, 1995.
    [67] C. K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time-series,” Chaos, vol. 5, no. 1, pp. 82–87, 1995.
    [68] M. H. Gail, S. Wieand, and S. Piantadosi, “Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates,” Biometrika, vol. 71, no. 3, pp. 431–444, 1984.
    [69] Y.-H. Lim, H. Kim, J. H. Kim, S. Bae, and Y.-C. Hong, “Effect of diurnal temperature range on cardiovascular markers in the elderly in seoul, korea,” International Journal of Biometeorology, vol. 57, no. 4, pp. 597–603, 2013.
    [70] T. Hastie and R. Tibshirani, Generalized Additive Models. Taylor and Francis, 1990.
    [71] H.-C. Chiu, C.-F. Chuang, Y.-C. Chen, Y.-H. Fan, Y.-H. Kao, H.-P. Ma, H. Chen, Y.-C. Chang, and S.-R. Yeh, “An integrated system for brain machine interface,” in International Conference on e-Health Networking, Applications and Services, 2012, pp. 407–410.
    [72] Y.-P. Lin, H.-C. Chiu, P.-Y. Huang, Z.-Y.Wang, H.-H. Cheng, P.-C. Huang, K.-T. Tang, H.-P. Ma, and H. Chen, “An implantable microsystem for long-term study on the mechanism of deep brain stimulation,” in IEEE Biomedical Circuits and Systems Conference, 2013, pp. 274–277.
    [73] C.-Y. Yeh, H.-C. Chiu, and H.-P. Ma, “An information hub for implantable wireless brain machine interface,” in International Symposium on VLSI Design, Automation, and Test, 2013, pp. 1–4.
    [74] J.Simsic and S. Teran, “oc8051 core specification.” [Online]. Available: http: //www.opencores.org
    [75] R. Hyo-Gyuem, J. Jaehun, J. A. Fredenburg, S. Dodani, P. G. Patil, and M. P. Flynn, “A fully self-contained logarithmic closed-loop deep brain stimulation soc with wireless telemetry and wireless power management,” IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2213–2227, 2014.
    [76] S. Stanslaski, P. Cong, D. Carlson, W. Santa, R. Jensen, G. Molnar, W. Marks, A. Shafquat, and T. Denison, “An implantable bi-directional brain-machine interface system for chronic neuroprosthesis research,” in Engineering in Medicine and Biology Society, 2009., Sept 2009, pp. 5494–5497.

    [77] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni, “A battery-powered activity-dependent intracortical microstimulation ic for brain-machine-brain interface,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 731–745, 2011.
    [78] K. Abdelhalim, H. M. Jafari, L. Kokarovtseva, J. L. Perez Velazquez, and R. Genov, “64-channel uwb wireless neural vector analyzer soc with a closed-loop phase synchrony-triggered neurostimulator,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2494–2510, 2013.
    [79] D. Lampret, “Openrisc 1200 ip core specification.” [Online]. Available: http: //openrisc.net/or1200-spec.html
    [80] R. Andraka, “A survey of cordic algorithms for fpga based computers,” pp. 191–200, 1998.
    [81] P. Silberstein, A. Pogosyan, A. A. Kuhn, G. Hotton, S. Tisch, A. Kupsch, P. Dowsey- Limousin, M. I. Hariz, and P. Brown, “Cortico-cortical coupling in parkinson’s disease and its modulation by therapy,” Brain, vol. 128, pp. 1277–1291, 2005.
    [82] M. Ayinala and K. K. Parhi, “Fft architectures for real-valued signals based on radix- 2(3) and radix-2(4) algorithms,” IEEE Transactions on Circuits and Systems I, vol. 60, no. 9, pp. 2422–2430, 2013.
    [83] W. Meissner, A. Leblois, D. Hansel, B. Bioulac, C. E. Gross, A. Benazzouz, and T. Boraud, “Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations,” Brain, vol. 128, pp. 2372–2382, 2005.
    [84] C. B. McCracken and Z. H. T. Kiss, “Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation,” Plos One, vol. 9, no. 7, 2014.
    [85] T.-J. Chen, H. Chiueh, S.-F. Liang, S.-T. Chang, C. Jeng, Y.-C. Hsu, and T.-C. Chien, “The implementation of a low-power biomedical signal processor for real-time epileptic seizure detection on absence animal models,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 4, pp. 613–621, 2011.
    [86] B. Isaacson, S. Dani, S. Desai, T. Denison, and P. Afshar, “A rapid algorithm prototyping tool for bi-directional neural interfaces,” International IEEE/EMBS Conference on Neural Engineering, pp. 633–636, Nov 2013.
    [87] S. R. Sridhara, M. DiRenzo, S. Lingam, S.-J. Lee, R. Blazquez, J. Maxey, S. Ghanem, Y.-H. Lee, R. Abdallah, P. Singh, and M. Goel, “Microwatt embedded processor platform for medical system-on-chip applications,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 721–730, 2011.
    [88] S. Little, A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo, M. Hariz, T. Foltynie, P. Limousin, K. Ashkan, J. FitzGerald, A. L. Green, T. Z. Aziz, and P. Brown, “Adaptive deep brain stimulation in advanced parkinson disease,” Annals of Neurology, vol. 74, no. 3, pp. 449–457, 2013.
    [89] A. Priori, G. Foffani, L. Rossi, and S. Marceglia, “Adaptive deep brain stimulation (adbs) controlled by local field potential oscillations,” Experimental Neurology, vol. 245, pp. 77–86, 2013.
    [90] E. E. Benarroch, “The central autonomic network - functional-organization, dysfunction, and perspective,” Mayo Clinic Proceedings, vol. 68, no. 10, pp. 988–1001, 1993.
    [91] S. D. Kreibig, “Autonomic nervous system activity in emotion: a review,” Biol Psychol, vol. 84, no. 3, pp. 394–421, 2010.
    [92] P. Ekman, R. W. Levenson, and W. V. Friesen, “Autonomic nervous system activity distinguishes among emotions,” Science, vol. 221, no. 4616, pp. 1208–10, 1983.
    [93] R. A. Calvo and S. D’Mello, “Affect detection: An interdisciplinary review of models, methods, and their applications,” IEEE Transactions on Affective Computing, vol. 1, no. 1, pp. 18–37, 2010.
    [94] P. C. Petrantonakis and L. J. Hadjileontiadis, “Emotion recognition from eeg using higher order crossings,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 2, pp. 186–197, 2010.
    [95] K.-E. Ko, H.-C. Yang, and K.-B. Sim, “Emotion recognition using eeg signals with relative power values and bayesian network,” International Journal of Control Automation and Systems, vol. 7, no. 5, pp. 865–870, 2009.
    [96] C. L. Lisetti and F. Nasoz, “Using noninvasive wearable computers to recognize human emotions from physiological signals,” Eurasip Journal on Applied Signal Processing, vol. 2004, no. 11, pp. 1672–1687, 2004.
    [97] R. W. Picard, E. Vyzas, and J. Healey, “Toward machine emotional intelligence: analysis of affective physiological state,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1175–1191, 2001.
    [98] C. Collet, E. VernetMaury, G. Delhomme, and A. Dittmar, “Autonomic nervous system response patterns specificity to basic emotions,” Journal of the Autonomic Nervous System, vol. 62, no. 1-2, pp. 45–57, 1997.
    [99] O. AlZoubi, S. K. D’Mello, and R. A. Calvo, “Detecting naturalistic expressions of nonbasic affect using physiological signals,” IEEE Transactions on Affective Computing, vol. 3, no. 3, pp. 298–310, 2012.
    [100] H.-C. Chiu, Y.-H. Lin, M.-T. Lo, S.-C. Tang, T.-D.Wang, H.-C. Lu, Y.-L. Ho, H.-P. Ma, and C.-K. Peng, “Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization,” Scientific Reports, vol. 5, p. 13315, 2015.
    [101] H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “Eeg-correlated fmri of human alpha activity,” Neuroimage, vol. 19, no. 4, pp. 1463–1476, 2003.
    [102] R. A. Calvo and S. D’Mello, “Affect detection: An interdisciplinary review of models, methods, and their applications,” IEEE Transactions on Affective Computing, vol. 1, no. 1, pp. 18–37, 2010.
    [103] E. Basar and B. Guntekin, “A breakthrough in neuroscience needs a ”nebulous Cartesian system” oscillations, quantum dynamics and chaos in the brain and vegetative system,” International Journal of Psychophysiology, vol. 64, no. 1, pp. 108–122, 2007.
    [104] S. Palva and J. M. Palva, “New vistas for alpha-frequency band oscillations,” Trends in Neurosciences, vol. 30, no. 4, pp. 150–158, 2007.
    [105] H. Kober, L. F. Barrett, J. Joseph, E. Bliss-Moreau, K. Lindquist, and T. D. Wager, “Functional grouping and cortical-subcortical interactions in emotion: A meta-analysis of neuroimaging studies,” Neuroimage, vol. 42, no. 2, pp. 998–1031, 2008.
    [106] E. Rodriguez, N. George, J. P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela, “Perception’s shadow: long-distance synchronization of human brain activity,” Nature, vol. 397, no. 6718, pp. 430–433, 1999.
    [107] O. Bertrand and C. Tallon-Baudry, “Oscillatory gamma activity in humans: a possible role for object representation,” International Journal of Psychophysiology, vol. 38, no. 3, pp. 211–223, 2000.
    [108] P. Gloor, “Work of berger,h,” Electroencephalography and Clinical Neurophysiology, vol. 27, no. 7, p. 649, 1969.
    [109] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, ser. Springer Series in Statistics. New York, NY, USA: Springer New York Inc., 2001.
    [110] A. Stammermann, L. Kruse, W. Nebel, A. Pratsch, E. Schmidt, M. Schulte, and A. Schulz, “System level optimization and design space exploration for low power,” in The 14th International Symposium on System Synthesis, 2001, pp. 142–146.
    [111] A. Raghunathan, N. K. Jha, and S. Dey, High-Level Power Analysis and Optimization. Kluwer Academic Publishers, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE