簡易檢索 / 詳目顯示

研究生: 黃國韜
Gou-Tao Huang
論文名稱: 路易斯鹼催化丙二烯酯反應性之計算研究
A Computational Study of Lewis Base Catalyzed Reactivity of Allenoates
指導教授: 游靜惠
口試委員: 尤禎祥
林文偉
蔡易州
鍾文聖
游靜惠
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 136
中文關鍵詞: 路易斯鹼催化丙二烯酯
外文關鍵詞: allenoate, ylide, Lewis base, phosphine, NHC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用密度泛函理論研究路易斯鹼催化丙二烯酯反應性。實驗觀察到膦與胺催化丙二烯酯與烯酮分子會分別產生五員環與六員環產物。計算結果顯示,穩定的膦ylide 中間物有利於最後產物五員環的形成。胺無法穩定此 ylide 中間物,因此不利於[3+2] 環加成反應。當缺電子的烯酮分子被使用當反應物時,胺則催化 [2+4] 環加成反應。路易斯鹼與丙二烯酯形成的加合物化學性質也被研究,例如溶劑效應、質子親合力、親核性與環加成反應性。路易斯鹼與丙二烯酯會形成 Z或 E加成物。比起膦或胺,螫合性氮異環碳烯會與丙二烯酯形成更穩定且放熱的加成物,因此螫合性氮異環碳烯不適合使用催化相關二烯酯反應。三苯基膦催化 [3+2] 環加成反應的位向選擇性也被研究。苯基的立體障礙導致 Z加成物,而有利於 γ 產物的形成。
    此外,我們研究鎳金屬催化芳香醚鍵切斷的反應機構。整個催化反應中,速率決定步驟為芳香醚鍵切斷。接下來,甲氧配位基會氧化形成甲醛,同時還原苯基配位基。計算顯示,氫氣主要用於還原甲醛,避免形成一氧化碳配位基的穩定鎳錯合物。


    摘要 i Abstract ii Contents iii List of Tables vii List of Schemes ix List of Figures xi List of Abbreviations xix Chapter 1 Overview 1 Chapter 2 Computational Methods and Theory 3 2.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Hohenberg-Kohn theorems . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Kohn-Shan scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Exchange-correlation energy functional, Exc [ρ ] . . . . . . . . . . . . . . . 7 2.1.4 The M06 suite of functionals . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Many-Body Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Møller-Plesset perturbation theory . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Spin-component-scaled MP2 . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Coupled Cluster Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Electron Localization Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Hirshfeld Charge Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 iii Chapter 3 Reactivity Difference toward Phosphine- and Amine-Catalyzed Cycloadditions of Allenoates and Enones 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Computational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 Addition of phosphines and amines to allenoates . . . . . . . . . . . . . . 23 3.3.2 Phosphine-catalyzed cycloaddition . . . . . . . . . . . . . . . . . . . . . 26 3.3.3 Amine-catalyzed reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.3.1 Rauhut-Currier reaction . . . . . . . . . . . . . . . . . . . . . . 30 3.3.3.2 Cycloadditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.3.3 E/Z stereoselectivity for γ-[2 + 4] dihydropyran products . . . . . 37 3.3.3.4 Competition between [2 + 4] cycloaddition and RC reaction . . . 39 3.3.4 Stability of [3 + 2] phosphorus- and ammonium-ylides . . . . . . . . . . . 41 3.3.5 FMO analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Chapter 4 Activation of Allenoates by Lewis Bases and Reactivity of Intermediate Adducts 49 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Computational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1 Addition of Lewis bases to methyl allenoate . . . . . . . . . . . . . . . . 52 4.3.2 Solvent effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.3 Protonation and nucleophilicity . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.4 [3 + 2] cycloaddition with ethylene 2a . . . . . . . . . . . . . . . . . . . 63 iv 4.3.5 Cycloadditions with enone and ketone substrates . . . . . . . . . . . . . . 66 4.3.5.1 Reaction of LB·allenoate with enone 2b . . . . . . . . . . . . . . 66 4.3.5.2 Reaction of LB · allenoate with ketone 2c . . . . . . . . . . . . . 68 4.3.5.3 Orbital and Coulomb interactions of the cycloadditions . . . . . . 75 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Chapter 5 Regioselectivity of PPh3 -Catalyzed [3 + 2] Cycloaddition of Allenoates and Activated Olefins 78 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2 Computational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.1 Formation of PPh3 · allenoate adducts . . . . . . . . . . . . . . . . . . . . 81 5.3.2 Influence of substrates on regioselectivity . . . . . . . . . . . . . . . . . 83 5.3.3 Influence of γ-substituted allenoates on regioselectivity . . . . . . . . . . 91 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Chapter 6 Activation of Aryl Ether Bonds 95 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2 Computational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.1 Ni-catalyzed hydrogenolysis of aryl ether bonds . . . . . . . . . . . . . . 97 6.3.1.1 Oxidative addition of aryl ether bonds . . . . . . . . . . . . . . . 98 6.3.1.2 Reduction by H2 . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.2 Influence of a bulky NHC ligand . . . . . . . . . . . . . . . . . . . . . . 104 6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 v Appendix 117 A.1 Systematic testing of the M06-2X/6-31+G* level . . . . . . . . . . . . . . . . . 117 A.2 Addition of PMe3 to allenoate/enone . . . . . . . . . . . . . . . . . . . . . . . . 120 A.3 Addition of DABCO to allenoates/enones . . . . . . . . . . . . . . . . . . . . . 121 A.4 Addition of Lewis bases to s-trans methyl allenoate . . . . . . . . . . . . . . . . 125 A.5 Solvent effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 A.6 Protonation and nucleophilicity . . . . . . . . . . . . . . . . . . . . . . . . . . 126 A.7 Cycloaddition of amine · allenoate to H2 C−CHCOPh 2b . . . . . . . . . . . . . 131 A.8 Assessment of computational methods and basis sets on the Ni system . . . . . . 132

    [1] List, B. Chem. Rev. 2007, 107, 5413–5415
    [2] Hohenberg, P. Phys. Rev. 1964, 136, B864–B871
    [3] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138
    [4] Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215–241
    [5] Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101-1–18
    [6] Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618–622
    [7] Szabo, A.; Ostlund, N. Modern Quantum Chemistry: Introduction to Advanced Electronic
    Structure Theory; Dover Books on Chemistry Series; Dover Publications, 1996
    [8] Grimme, S. J. Chem. Phys. 2003, 118, 9095–9102
    [9] Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989,
    157, 479–483
    [10] Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397–5403
    [11] Noury, S.; Colonna, F.; Savin, A.; Silvi, B. J. Mol. Struct. 1998, 450, 59–68
    [12] Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. Comput. Chem. 1999, 23, 597–604
    [13] Hirshfeld, F. L. Theoret. Chim. Acta 1977, 44, 129–138
    [14] Krause, N., Hashmi, A. S. K., Eds. Modern Allene Chemistry; Wiley-VCH: Weinheim,
    2004
    [15] Ma, S. Chem. Rev. 2005, 105, 2829–2872
    108
    [16] Yu, S.; Ma, S. Angew. Chem. Int. Ed. 2012, 51, 3074–3112
    [17] López, F.; Mascareñas, J. L. Chem. Eur. J. 2011, 17, 418–428
    [18] Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102–3116
    [19] Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906–2908
    [20] Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem. Soc. 1997, 119,
    3836–3837
    [21] Xu, Z.; Lu, X. Tetrahedron Lett. 1997, 38, 3461–3464
    [22] Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031–5041
    [23] Wilson, J. E.; Fu, G. C. Angew. Chem. Int. Ed. 2006, 45, 1426–1429
    [24] Pinto, N.; Neel, M.; Panossian, A.; Retailleau, P.; Frison, G.; Voituriez, A.; Marinetti, A.
    Chem. Eur. J. 2010, 16, 1033–1045
    [25] Cowen, B. J.; Saunders, L. B.; Miller, S. J. J. Am. Chem. Soc. 2009, 131, 6105–6107
    [26] Fujiwara, Y.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 12293–12297
    [27] Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.-X. Chem. Eur. J. 2008, 14, 4361–4373
    [28] Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M. Chem. Commun. 2011, 47, 1548–1550
    [29] Chen, X.-Y.; Wen, M.-W.; Ye, S.; Wang, Z.-X. Org. Lett. 2011, 13, 1138–1141
    [30] Wang, X.; Fang, T.; Tong, X. Angew. Chem. Int. Ed. 2011, 50, 5361–5364
    [31] Ashtekar, K. D.; Staples, R. J.; Borhan, B. Org. Lett. 2011, 13, 5732–5735
    [32] Pei, C.-K.; Wu, L.; Lian, Z.; Shi, M. Org. Biomol. Chem. 2012, 10, 171–180
    109
    [33] Pei, C.-K.; Jiang, Y.; Shi, M. Org. Biomol. Chem. 2012, 10, 4355–4361
    [34] Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M. Org. Lett. 2011, 13, 1142–1145
    [35] Pei, C.-K.; Jiang, Y.; Wei, Y.; Shi, M. Angew. Chem. Int. Ed. 2012, 51, 11328–11332
    [36] Pei, C.-K.; Shi, M. Chem. Eur. J. 2012, 18, 6712–6716
    [37] Evans, C. A.; Miller, S. J. J. Am. Chem. Soc. 2003, 125, 12394–12395
    [38] Evans, C. A.; Cowen, B. J.; Miller, S. J. Tetrahedron 2005, 61, 6309–6314
    [39] Li, C.; Zhang, Q.; Tong, X. Chem. Commun. 2010, 46, 7828–7830
    [40] Li, K.; Hu, J.; Liu, H.; Tong, X. Chem. Commun. 2012, 48, 2900–2902
    [41] Frisch, M. J. et al. Gaussian 09 Revision A.1. Gaussian Inc. Wallingford CT 2009
    [42] Barone, V.; Cossi, M.; Tomasi, J. J. Comput. Chem. 1998, 19, 404–417
    [43] Cancès, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032–3041
    [44] Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327–335
    [45] Werner, H.-J. et al. MOLPRO, version 2006.1, a package of ab initio programs. 2006
    [46] Cantillo, D.; Kappe, C. O. J. Org. Chem. 2010, 75, 8615–8626
    [47] Gandhi, R. P.; Ishar, M. P. S. Magn. Reson. Chem. 1991, 29, 671–674
    [48] Buono, G.; Llinas, J. R. J. Am. Chem. Soc. 1981, 103, 4532–4540
    [49] Zhao, Y.; Ng, H. T.; Peverati, R.; Truhlar, D. G. J. Chem. Theory Comput. 2012, 8, 2824–
    [50] Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X. J.
    Am. Chem. Soc. 2007, 129, 3470–3471
    [51] Kumar, K.; Kapur, A.; Ishar, M. P. S. Org. Lett. 2000, 2, 787–789
    [52] Zhu, X.-F.; Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org. Lett. 2005, 7, 1387–1390
    [53] Aggarwal, V. K.; Fulford, S. Y.; Lloyd-Jones, G. C. Angew. Chem. Int. Ed. 2005, 44, 1706–
    1708
    [54] Roy, D.; Sunoj, R. B. Chem. Eur. J. 2008, 14, 10530–10534
    [55] Jørgensen, K. Angew. Chem. Int. Ed. 2000, 39, 3558–3588
    [56] Kitagaki, S.; Kawamura, T.; Shibata, D.; Mukai, C. Tetrahedron 2008, 64, 11086–11095
    [57] Mukai, C.; Kuroda, N.; Ukon, R.; Itoh, R. J. Org. Chem. 2005, 70, 6282–6290
    [58] Mukai, C.; Ohta, M.; Yamashita, H.; Kitagaki, S. J. Org. Chem. 2004, 69, 6867–6873
    [59] Mukai, C.; Yamashita, H.; Hanaoka, M. Org. Lett. 2001, 3, 3385–3387
    [60] Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165–195
    [61] Hammett, L. P. Chem. Rev. 1935, 17, 125–136
    [62] Schuler, M.; Voituriez, A.; Marinetti, A. Tetrahedron: Asymmetry 2010, 21, 1569–1573
    [63] Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334–338
    [64] Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535–544
    [65] Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140–1152
    [66] Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927–2940
    111
    [67] Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding, T. Tetrahedron Lett. 2007, 48,
    3617–3620
    [68] Dudding, T.; Kwon, O.; Mercier, E. Org. Lett. 2006, 8, 3643–3646
    [69] Zhao, L.; Wen, M.; Wang, Z.-X. Eur. J. Org. Chem. 2012, 3587–3597
    [70] Huang, G.-T.; Lankau, T.; Yu, C.-H. J. Org. Chem. 2014, 79, 1700–1711
    [71] Soriano, E.; Fernández, I. Chem. Soc. Rev. 2014, 43, 3041–3105
    [72] Wang, T.; Ye, S. Org. Biomol. Chem. 2011, 9, 5260–5265
    [73] Pyne, S. G.; Schafer, K.; Skelton, W.; White, A. H. Chem. Commun. 1997, 3, 2267–2268
    [74] Ung, A. T.; Schafer, K.; Lindsay, K. B.; Pyne, S. G.; Amornraksa, K.; Wouters, R.; Van
    der Linden, I.; Biesmans, I.; Lesage, A. S. J.; Skelton, B. W.; White, A. H. J. Org. Chem.
    2002, 67, 227–233
    [75] Du, Y.; Lu, X. J. Org. Chem. 2003, 68, 6463–6465
    [76] Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 10988–10989
    [77] Fang, Y.-Q.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 5660–5661
    [78] Voituriez, A.; Panossian, A.; Fleury-Brégeot, N.; Retailleau, P.; Marinetti, A. J. Am. Chem.
    Soc. 2008, 130, 14030–14031
    [79] Jones, R. A.; Krische, M. J. Org. Lett. 2009, 11, 1849–1851
    [80] Xiao, H.; Chai, Z.; Zheng, C.-W.; Yang, Y.-Q.; Liu, W.; Zhang, J.-K.; Zhao, G. Angew.
    Chem. Int. Ed. 2010, 49, 4467–4470
    [81] Steurer, M.; Jensen, K. L.; Worgull, D.; Jørgensen, K. A. Chem. Eur. J. 2012, 18, 76–79
    112
    [82] Wang, T.; Chen, X.-Y.; Ye, S. Tetrahedron Lett. 2011, 52, 5488–5490
    [83] Zhao, G.-L.; Huang, J.-W.; Shi, M. Org. Lett. 2003, 5, 4737–4739
    [84] Santos, B. S.; Cardoso, A. L.; Matos Beja, A.; Ramos Silva, M.; Paixão, J. A.; Palacios, F.;
    Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2010, 3249–3256
    [85] Chen, X.-Y.; Lin, R.-C.; Ye, S. Chem. Commun. 2012, 48, 1317–1319
    [86] Denis, J.-B.; Masson, G.; Retailleau, P.; Zhu, J. Angew. Chem. Int. Ed. 2011, 50, 5356–
    5360
    [87] Selig, P.; Turočkin, A.; Raven, W. Chem. Commun. 2013, 49, 2930–2932
    [88] Selig, P.; Turočkin, A.; Raven, W. Adv. Synth. Catal. 2013, 355, 297–302
    [89] Zhao, Q.-Y.; Huang, L.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2012, 354, 1926–1932
    [90] Yang, L.-J.; Li, S.; Wang, S.; Nie, J.; Ma, J.-A. J. Org. Chem. 2014, 79, 3547–3558
    [91] Marion, N.; Díez-González, S.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2988–3000
    [92] Nair, V.; Vellalath, S.; Babu, B. P. Chem. Soc. Rev. 2008, 37, 2691–2698
    [93] Sun, L.; Wang, T.; Ye, S. Chin. J. Chem. 2012, 30, 190–194
    [94] Palomas, D.; Holle, S.; Inés, B.; Bruns, H.; Goddard, R.; Alcarazo, M. Dalton Trans. 2012,
    41, 9073–9082
    [95] Gompper, R.; Wolf, U. Liebigs Ann. Chem. 1979, 1406–1425
    [96] Peng, C.; Schlegel, H. B. Israel J. Chem. 1993, 33, 449–454
    [97] Klopman, G. J. Am. Chem. Soc. 1968, 90, 223–234
    113
    [98] Salem, L. J. Am. Chem. Soc. 1968, 90, 543–552
    [99] Salem, L. J. Am. Chem. Soc. 1968, 90, 553–566
    [100] Sabatier, P. Ber. Dtsch. Chem. Ges. 1911, 44, 1984–2001
    [101] Wang, J.-C.; Krische, M. J. Angew. Chem. Int. Ed. 2003, 42, 5855–5857
    [102] Du, Y.; Lu, X.; Yu, Y. J. Org. Chem. 2002, 8901–8905
    [103] García Ruano, J. L.; Núñez, A.; Martín, M. R.; Fraile, A. J. Org. Chem. 2008, 73, 9366–
    9371
    [104] Lu, X.; Lu, Z.; Zhang, X. Tetrahedron 2006, 62, 457–460
    [105] Wallace, D. J.; Sidda, R. L.; Reamer, R. a. J. Org. Chem. 2007, 72, 1051–1054
    [106] Voituriez, A.; Pinto, N.; Neel, M.; Retailleau, P.; Marinetti, A. Chem. Eur. J. 2010, 16,
    12541–12544
    [107] Gomez, C.; Gicquel, M.; Carry, J.-C.; Schio, L.; Retailleau, P.; Voituriez, A.;
    Marinetti, A. J. Org. Chem. 2013, 78, 1488–1496
    [108] Li, X.; Wang, F.; Dong, N.; Cheng, J.-P. Org. Biomol. Chem. 2013, 11, 1451–1455
    [109] Zou, Y.-Q.; Li, C.; Rong, J.; Yan, H.; Chen, J.-R.; Xiao, W.-J. Synlett 2011, 2011, 1000–
    1004
    [110] Duvvuru, D.; Pinto, N.; Gomez, C.; Betzer, J.-F.; Retailleau, P.; Voituriez, A.;
    Marinetti, A. Adv. Synth. Catal. 2012, 354, 408–414
    [111] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378–6396
    [112] Martin, R. L.; Hay, P. J.; Pratt, L. R. J. Phys. Chem. A 1998, 102, 3565–3573
    114
    [113] Creech, G. S.; Zhu, X.-F.; Fonovic, B.; Dudding, T.; Kwon, O. Tetrahedron 2008, 64,
    6935–6942
    [114] Guan, X.-Y.; Wei, Y.; Shi, M. Org. Lett. 2010, 12, 5024–5027
    [115] Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610–618
    [116] Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem. Int. Ed. 2009, 48, 9792–9826
    [117] Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761–2776
    [118] Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746–1787
    [119] Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168
    [120] Chakar, F. S.; Ragauskas, A. J. Ind. Crops. Prod. 2004, 20, 131–141
    [121] Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. Rev. 2010,
    110, 3552–3599
    [122] Hocking, M. B. J. Chem. Educ. 1997, 74, 1055–1059
    [123] Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.;
    Percec, V. Chem. Rev. 2011, 111, 1346–1416
    [124] Tobisu, M.; Chatani, N. Top. Organomet. Chem. 2013, 44, 35–53
    [125] Kashima, K.; Maeda, Y.; Oshima, M. Canadian Patent 700210, 1964
    [126] Urban, P.; Engel, D. U.S. Patent 4731491, 1988
    [127] Dankwardt, J. W. Angew. Chem. Int. Ed. 2004, 43, 2428–2432
    [128] Álvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc. 2010, 17352–17353
    115
    [129] Tobisu, M.; Yamakawa, K.; Shimasaki, T.; Chatani, N. Chem. Commun. 2011, 47, 2946–
    2948
    [130] Cornella, J.; Gómez-Bengoa, E.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1997–2009
    [131] Sergeev, A. G.; Hartwig, J. F. Science 2011, 332, 439–443
    [132] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305
    [133] Pantazis, D. A.; Chen, X.-Y.; Landis, C. R.; Neese, F. J. Chem. Theory Comput. 2008, 4,
    908–919
    [134] Neese, F. ORCA - an ab initio, Density Functional and Semiempirical Program Package,
    2.6–35; Universitat Bonn: Bonn, Germany, 2008.
    [135] Balabanov, N. B.; Peterson, K. A. J. Chem. Phys. 2005, 123, 64107-1–15
    [136] Kelley, P.; Lin, S.; Edouard, G.; Day, M. W.; Agapie, T. J. Am. Chem. Soc. 2012, 134,
    5480–5483
    [137] Popelier, P.; Logothetis, G. J. Organomet. Chem. 1998, 555, 101–111
    [138] Koch, U.; Popelier, P. L. A. J. Phys. Chem. 1995, 99, 9747–9754

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE