簡易檢索 / 詳目顯示

研究生: 陳志吉
Chih-chi Chen
論文名稱: 無鉛銲料與(鎳-釩)基材間之界面反應及錫-鎳-釩相平衡
Interfacial reactions between Pb-free solders and the (Ni-V) substrate and Sn-Ni-V phase equilibria studies
指導教授: 陳信文
Sinn-wen Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 171
中文關鍵詞: 界面反應鎳-釩無鉛銲料
外文關鍵詞: interfacial reactions, Ni-V, Pb-free solders
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究主題為Ni-V合金與無鉛銲料(Pb-free solder)之界面反應及Sn-Ni-V三元系統之相平衡。覆晶構裝(flip chip packaging)是目前最先進之電子構裝技術,Ni-V合金是覆晶構裝最常用之擴散阻障層材料。由於環保意識的抬頭,以無鉛銲料取代錫鉛銲料為大勢所趨。因此,Ni-V合金與無鉛銲料之接合將是電子產品中最常見之銲點(solder joints)結構。
    銲點之界面反應與產品可靠度息息相關。本論文探討Ni-V合金與各種無鉛銲料之界面反應,包括Sn、共晶Sn-Cu(Sn-0.7wt.%Cu)與共晶Sn-Ag(Sn-3.5wt.%Ag)。目前文獻上普遍探討的是Ni與無鉛銲料之界面反應,Ni-V合金與無鉛銲料之界面反應的研究十分稀少。雖然Ni-V合金中V含量只有7wt.%,但這並不意味其對界面反應沒有影響。本論文將針對無鉛銲料/Ni-V之界面反應作深入探討。此外,在電子元件中,銲點承受很大之電流密度,電遷移效應不可忽略,故本論文也針對電遷移效應對界面反應之影響作探討。而由於相平衡資訊為探討界面反應所不可缺少,本論文之研究範疇也涵概Sn-Ni-V三元系統之相平衡。
    相平衡實驗結果顯示,在250oC下,靠近富錫區之Sn-Ni-V相平衡結果為L(Sn)+Ni3Sn4+V2Sn3三相共存。Ni3Sn4相與V2Sn3相對第三元素幾乎沒有溶解度,L(Sn)相對Ni與V也幾乎沒有溶解度,也沒有形成三元相。V2Sn3相之組成為Sn-34at.%V,與CuMg2之結構相符,應該改寫成VSn2。
    界面反應實驗結果顯示,無鉛銲料/Ni-V之界面反應與無鉛銲料/Ni截然不同。當V的添加量為5wt.%以上時,無鉛銲料/Ni-V界面會生成一層Sn-Ni-V之三元相 (T相),此三元相並非熱力學穩定相,而是在特定條件下,藉由反應生成之介穩定相,其結構為介於非結晶與多晶之間。在固/固反應中,會生成T/Ni3Sn4/T/Ni3Sn4之罕見生成相排列,為兼具「固態非結晶化」(solid state amorphization) 與「生成相交錯排列」(alternating) 雙重特殊性之反應。在液/固反應中,三元相之存在,導致其他生成相,如Ni3Sn4相,剝落至熔融銲料中,並使原來在無鉛銲料/Ni系統中就會剝落的生成相,如Cu6Sn5相,剝落的情況加劇。
    500A/cm2電流密度之電流對Sn/Ni-V界面反應之影響與其對Sn/Ni之影響相同,生成相種類沒有改變,但反應速率有改變。在電子流與Sn原子擴散同向之界面,反應速率變快。在電子流與Sn原子擴散反向之界面,反應速率變慢。此結果符合動量轉移理論。
    覆晶構裝真正使用之擴散阻障層材料為Ni-V,並非純Ni。既然無鉛銲料/Ni-V之界面反應與無鉛銲料/Ni不同,覆晶構裝產品之可靠度評估必須依據無鉛銲料/Ni-V之界面反應,而非無鉛銲料/Ni之界面反應。


    Ni-V alloys are frequently used as diffusion barrier materials in the electronic products. As a result, solder/Ni-V joints are often encountered in electronic products. Since Sn is the primary element of most of the electronic solders, Sn-Ni-V is an important ternary material system. However, its phase equilibria information is not available. Interfacial reactions are crucial for the reliabilities of the solder joints. There have been intensive investigations about solders/Ni interfacial reactions, but the interfacial reactions between solders and Ni-V substrates are seldom examined. This study investigates the phase equilibria of the Sn-Ni-V ternary system and the interfacial reactions between solders and the Ni-V substrates. The solders include pure Sn, eutectic Sn-Cu (Sn-0.7wt.%Cu) and eutectic Sn-Ag (Sn-3.5wt.%Ag) solders. The electromigration effect upon solders/Ni-V interfacial reactions is also examined in this study.
    Phase equilibria of the Sn-Ni-V system at 250oC were determined both by experimental determination and calculation with CALPHAD method. No ternary equilibrium phase is observed. At the Sn-rich corner, it is a L(Sn)+Ni3Sn4+VSn2(V2Sn3) three-phase region. The ternary elemental solubilities of Ni3Sn4 phase and VSn2(V2Sn3) phase are negligible, and those of both Ni and V in the liquid phase are also very low. The composition of VSn2(V2Sn3) phase is Sn-34at.%V, which is consistent to the structural prototype of CuMg2, and should be accordingly renamed as VSn2.
    The interfacial reactions in the solders/Ni-V couples are different from those of solders/Ni. When the V addition is higher than 5wt.%, a ternary meta-stable phase (T phase) is formed. It is an amorphous phase mixing with Ni3Sn4 fine grains. In the solid/solid reactions, unusual T/Ni3Sn4/T/Ni3Sn4 reaction phases were observed in the solders/Ni-V couples. It has two features: solid state amorphization and alternating reaction phases. In liquid/solid reactions, T phase formation makes the reaction phase detachment earlier in comparison with that of Ni substrate. Since Ni-V alloys are the commercial barrier layer materials practically used, and the solders/Ni-V interfacial reactions are different from those in the solders/Ni couples, the reliability assessments of flip chip products should be based on the interfacial reactions of solders/Ni-V.
    Electric current with 500A/cm2 density exhibits the same effect upon Sn/Ni-V interfacial reactions as upon those of Sn/Ni. The reaction phases are not altered, but the reaction rate is changed. At the interface where the electron flow and Sn atoms diffusion are co-current, the reaction rate is enhanced. In contrast, at the interface where the electron flow and Sn atoms diffusion are counter-current, the reaction rate is retarded. The result agrees with the momentum transfer theory.

    頁次 圖目錄 I 表目錄 VII 中文摘要 IX 英文摘要 XII 第一章 前言 1 第二章 文獻回顧 10 2-1 相平衡 10 2-1-1 Sn-Ni相平衡 11 2-1-2 Sn-V相平衡 13 2-1-3 Ni-V相平衡 15 2-1-4 Sn-Ni-V相平衡 17 2-1-5熱力學模型 17 2-2界面反應 20 2-2-1 Sn/Ni 26 2-2-2 Sn-Ag/Ni 29 2-2-3 Sn-Cu/Ni 32 2-3電遷移效應對界面反應之影響 34 2-4 銲料/Ni-V界面反應 37 第三章 研究方法 38 3-1相平衡 38 3-2界面反應 41 3-2-1 合金材料的製備 41 3-2-2 反應偶的製備 42 液/固反應偶 43 固/固反應偶 44 3-2-3界面生成相之分析 45 3-3 電遷移實驗 47 第四章 結果與討論 50 4-1 Sn-Ni-V三元系統在250oC之相平衡 50 4-2 Sn-(Ag)/Ni-V之界面反應 72 4-2-1 Sn/Ni-7wt.%V在120oC-180oC之界面反應 72 4-2-2 Sn/Ni-7wt.%V在200oC之界面反應 83 4-2-3 Sn/Ni-7wt.%V之液/固界面反應 96 4-2-4 V添加量對Sn/Ni-V液/固界面反應之影響 109 4-2-5 Sn-3.5wt.%Ag/Ni-V之液/固界面反應 112 4-3電遷移效應對Sn/Ni-7wt.%V界面反應之影響 116 4-4 Sn-0.7wt.%Cu/Ni-V之界面反應 126 4-4-1 Sn-0.7wt.%Cu/Ni-7wt.%V之固/固界面反應 126 4-4-2 Sn-0.7wt.%Cu/Ni-7wt.%V之液/固界面反應 140 4-4-3 V添加量對Sn-0.7wt.%Cu/Ni-V界面反應之影響 151 第五章 結論 156 參考文獻 158

    1.R. Armin: The Basics of Soldering, John Wiely & Sons, New York, pp. 29-30 (1993).
    2.陳志銘與陳信文,材料會訊,第6卷第2期,pp. 74-80 (1999)。
    3.H. B. Huntington, in "Diffusion in Solids: Recent Developments", edited by A. S. Nowick and J. J. Burton, Academic Press, New York, 1975, pp. 303-352.
    4.V. N. Pimenov, K. P. Gurov, K. I. Khurdyakov, S. S. Dol’nikov, R. A. Milievskii, V. S. Khlomov, and Yu. G. Miller, Fiz. Khim. Obrabotki Materialov, Vol. 1, p. 107 (1978).
    5.D. A. Golopentia and H. B. Huntington, Journal of Physics and Chemistry of Solids, Vol. 39, pp. 975-984 (1978).
    6.P. Shewmon: Diffusion in Solids, 2nd edition, Warrendale, Pennsylvania, TMS (1989).
    7.M. Braunović and N. Alexandrov, IEEE Transactions on Components, Packaging, and Manufacturing Technology-part A, Vol. 17(1), pp. 78-85 (1994).
    8.E. C. C. Yeh, W. J. Choi and K. N. Tu, P. Elenius, and Haluk Balkan, Applied Physics Letters, Vol. 80, pp. 580-582 (2002).
    9.K. Zeng and K. N. Tu, Materials Science and Engineering R, Vol. 38, pp. 55-105, (2002).
    10.W. J. Choi, E. C. C. Yeh, and K. N. Tu, Journal of Applied Physics, Vol. 94, pp. 5665-5671 (2003).
    11.H. Gan, K. N. Tu, Journal of Applied Physics, Vol. 97(6), No. 063514 (2005).
    12.S.-W. Chen and C.-M. Chen, JOM, Vol. 55(2), pp. 62-67 (2003).
    13.W.-C. Liu, S.-W. Chen and C.-M. Chen, Journal of Electronic Materials, Vol. 27(1) pp. L5-L8 (1998).
    14.S.-W. Chen, C.-M. Chen, and W.-C. Liu, Journal of Electronic Materials, Vol. 27(11), pp. 1193-1198 (1998).
    15.C.-M. Chen and S.-W. Chen, Journal of Electronic Materials, Vol. 28(7), pp. 902-906 (1999).
    16.K. N. Chen, H. H. Lin, S. L. Cheng, Y. C. Peng, G. H. Shen, L. J. Chen, C. R. Chen, J. S. Huang, K. N. Tu, Journal of Materials Research, Vol. 14(12), pp. 4720-4726 (1999).
    17.C.-M. Chen and S.-W. Chen, Journal of Electronic Materials, Vol. 29(10), pp. 1222-1228 (2000).
    18.C.-M. Chen and S.-W. Chen, Journal of Applied Physics, Vol. 90(3), pp. 1208-1214 (2001).
    19.N. Bertolino, J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, Scripta Materialia, Vol. 44(5), pp. 737-742 (2001).
    20.J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, Journal of Applied Physics, Vol. 94, pp. 7560-7566 (2003).
    21.C.-M. Chen and S.-W. Chen, Acta Materialia, Vol. 50 pp. 2461-2469 (2002).
    22.C.-M. Chen and S.-W. Chen, Journal of Materials Research, Vol. 18(6), pp. 1293-1296 (2003).
    23.M.-Y. Du, C.-M. Chen and S.-W. Chen, Materials Chemistry and Physics, Vol. 82 pp. 818-825 (2003).
    24.H. T. Orchard, A. L. Greer, Applied Physics Letters, Vol. 86(23), No. 231906 (2005).
    25.陳志銘,清華大學化工所博士論文 (2002)。
    26.S.-W. Chen and C.-H. Wang, Journal of Materials Research, Vol. 22(3), pp. 695-702 (2007).
    27.Y. C. Hu, Y. H. Lin, C. R. Kao, and, K. N. Tu, Journal of Materials Research, Vol. 18(11), pp. 2544-2548 (2003).
    28.Y. H. Lin, Y. C. Hu, C. M. Tsai, C. R. Kao, and K. N. Tu, Acta Materialia, Vol. 53(7), pp. 2029-2035 (2005).
    29.C. M. Tsai, Y. L. Lin, J. Y. Tsai, and C. R. Kao, Journal of Electronic Materials, Vol. 35(5), pp. 1005-1009 (2006).
    30.Y. L. Lin, C. W. Chang, C. M. Tsai, and C. R. Kao, Journal of Electronic Materials, Vol. 35(5), pp. 1010-1016 (2006).
    31.C. M. Tsai, Y. S. Lai, Y. L. Lin, C. W. Chang, and C.R. Kao, Journal of Electronic Materials, Vol. 35(10), pp. 1781-1786 (2006).
    32.C.-M. Hsu, D. S.-H. Wong, and S.-W. Chen, Journal of Applied Physics, Vol. 102(2), 023715 (2007).
    33.F. N. Rhines, Phase Diagrams in Metallurgy, McGraw & Hall, New York (1956).
    34.Y. A. Chang, S.-L. Chen, F. Zhang, X.-Y. Yan, F.-Y. Xie, R. Schmid-Fetzer and W. A. Oates, Progress in Materials Science, Vol. 49, pp. 313-345 (2004).
    35.C. R. Kao, JOM, Vol. 55(12), pp. 47 (2003).
    36.C.-H. Lin, S.-W. Chen and C.-H. Wang, Journal of Electronic Materials, Vol. 31(9), pp. 907-915 (2002).
    37.H.-F. Hsu and S.-W. Chen, Acta Materialia, Vol. 52(9), pp. 2541-2547 (2004).
    38.C.-Y. Chou and S.-W. Chen, Acta Materialia, Vol. 54(9), pp. 2393-2400 (2006).
    39.S.-W. Chen, H.-F. Hsu and C.-W. Lin, Journal of Materials Research, Vol. 19(8), pp. 2262-2267 (2004).
    40.Y.-W. Yen and S.-W. Chen, Journal of Materials Research, Vol. 19(8), pp. 2298-2305 (2004).
    41.S.-W. Chen and C.-A. Chang, Journal of Electronic Materials, Vol. 33(10), pp. 1071-1079 (2004).
    42.S.-W. Chen, C.-N. Chiu and K.-C. Hsieh, Journal of Electronic Materials, Vol. 36(3), pp. 197-206 (2007).
    43.S.-W. Chen, C.-H. Wang, S.-K. Lin and C.-N. Chiu, Journal of Materials Science: Materials in Electronics, Vol. 18, pp. 19-37 (2007).
    44.Y.-W. Yen and S.-W. Chen, Journal of Materials Research, Vol. 19(8), pp. 2298-2305 (2004).
    45.C.-A. Chang, S.-W. Chen, C.-N. Chiu and Y.-C. Huang, Journal of Electronic Materials, Vol. 34(8), pp. 1135-1142 (2005).
    46.C.-N. Chiu, Y.-C. Huang, A.-R. Zi and S.-W. Chen, Materials Transactions, Vol. 46(11), pp. 2426-2430 (2005).
    47.Simon Green, Deborah Lea and Christopher Hunt, NPL Report CMMT(A), Vol. 213, pp.1-10, (Aug. 1999).
    48.Official Journal of the European Union, pp. L 37/19-L 37/23, 13.2.2003.
    49.Official Journal of the European Union, pp. L 37/24-L 37/38, 13.2.2003.
    50.J. Glazer, International Materials Reviews, Vol. 40(2), pp. 65-93 (1995).
    51.W. J. Plumbridge, Journal of Materials Science, Vol. 31, pp. 2501-2514 (1996).
    52.陳信文,電子與材料,第1期,pp. 74-77 (1999)。
    53.M. Abtew and G. Selvaduray, Materials Science and Engineering, Vol. 27, pp. 95-141 (2000).
    54.D. F. Frear, J. W. Jang, J. K. Lin and C. Zhang, JOM, Vol. 53(6), pp. 28-32 (2001).
    55.H. Gan, W. J. Choi, G. Xu, and K. N. Tu, JOM, Vol. 54(6), pp. 34-37 (2002).
    56.楊明芳,”覆晶封裝技術簡介”,產業調查與技術,第一三一期,pp. 47-54 (1999)。
    57.陳明坤,”高密度覆晶風裝技術概論”,表面黏著技術,第三十八期,pp. 34-42 (2002)。
    58.M. Li, F. Zhang, W. T. Chen, K. Zeng, K. N. Tu, H. Balkan and P. Elenius, Journal of Materials Research, Vol. 17(7), pp. 1612-1621 (2002).
    59.F. Zhang, M. Li, C. C. Chum and Z. C. Shao, Journal of Electronic Materials, Vol. 32(3), pp. 123-130 (2003).
    60.T. Laurila, V. Vuorinen and J.K. Kivilahti, Materials Science and Engineering R, Vol. 49, pp. 1-60 (2005).
    61.C. Y. Liu, K. N. Tu, T. T. Sheng, C. H. Tung, D. R. Frear and P. Elenius, Journal of Applied Physics, Vol. 87(2), pp.750-754 (2000).
    62.Tan Teck Chun, Tung Chih Hang and Chai Tai Chong, Proceedings from 28th International Symposium for Testing and Failure Analysis, pp. 127-132 (2002).
    63.Chih Hang Tung, Poi Siong Teo and Charles Lee, IEEE Transactions on Device and Materials Reliability, Vol. 5(2), pp. 212-216 (2005).
    64.F. Zhang, M. Li, C. C. Chum and K. N. Tu, Journal of Materials Research, Vol. 17(11), pp. 2757-2760 (2002).
    65.F. Zhang, M. Li, C. C. Chum and C.-H. Tung, Journal of Materials Research, Vol. 18(6), pp. 1333-1341 (2003).
    66.G.-Y. Jang and J.-G. Duh, Journal of Electronic Materials, Vol. 35(11), pp. 2061-2070 (2006).
    67.C. Y. Liu and S. J. Wang, Journal of Electronic Materials, Vol. 32(1), pp. L1-L3 (2003).
    68.劉業繡,國立成功大學博士論文(2005).
    69.W. J. Choi, E.C.C. Yeh and K. N. Tu, Electronic Components and Technology Conference, pp. 1201-1205 (2002).
    70.P. Nash and A. Nash, Bulletin of Alloy Phase Diagrams, Vol. 6(4), pp. 350-359 (1985).
    71.J. F. Smith, Phase Diagrams of Binary Vanadium Alloys, Metals Park, Ohio, ASM International, pp. 270-274 (1989).
    72.W. Koster and K. Haug, Z. Metallkde, Vol. 48, pp. 327-330 (1957).
    73.F. Jauault and P. Lecocq, Properties Thermodynamique Physiques et Structurales des Derives Semi-Metalliques, Coloq. Internat. du Centre National de La Recherche Scientifique, No. 157, 229-235 (1967).
    74.L. V. Marchukova, N. M. Matveyeva and I. I. Kornilov, Russ. Metall., No. 2, pp. 157-159 (1973).
    75.S. Komjathy, Journal of less-common metals, Vol. 3, pp.468-488 (1961).
    76.L. V. Goncharuk, V. N. Eremenko, G. M. Lukashenko and V. R. Sidorko, Akad. Nauk SSSR, Vol. 245, pp. 865-867 (1979).
    77.T. Studnitzky, B. Onderka and R. Schmid-Fetzer, Z. Metallkde, Vol. 93, pp. 48-57 (2002).
    78.J. F. Smith, O. N. Carlson and P. G. Nash, Phase Diagrams of Binary Nickel Alloys, Materials Park, Ohio, ASM International, pp. 361-367 (1991).
    79.L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams, New York, Academic Press (1970).
    80.ThermoCalc v. R. Fundation Computational Thermodynamic, Stockholm, Sweden (2006).
    81.Pandat, CompuTherm LLC, 437 S. Yellowstone Dr. Suite 217 Madison, WI 53719 USA.
    82.PURE 4.4 SGTE Pure Elements (Unary) Database, Scientific Group Thermodata Europe, 1991-2006.
    83.N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, Vol. 11(3), pp. 278-287 (1990).
    84.D. A. Porter and K. E. Easterling, Phase Transformation in Metals and Alloys, 2nd edition, Chapman & Hall, London, 1992.
    85.F. J. J. van Loo, Prog. Solid St. Chem., Vol. 20, pp. 47-99 (1990).
    86.C. Wagner, Z. Anorg. Chem., Vol. 236, pp. 320 (1938).
    87.Paul Shewmon, Diffusion in Solids, 2nd edition, TMS, Warrendale, Pennsylvania (1998).
    88.J. B. Clark, Transactions of the Metallurgical Society of AIME, Vol. 227, pp. 1250-1251 (1963).
    89.J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly, Vol. 2, pp. 89-117 (1963).
    90.S. K. Kang and V. Ramachandran, Scripta Metallurgica, Vol. 14, pp. 421-424 (1980).
    91.Z. Marinkovic and V. Simic, Thin Solid Films, Vol. 98(2), pp. 95-100 (1982).
    92.J. A. van Beek, S. A. Stolk and Frans J. J. van Loo, Z. Metallkde, Vol. 73(7), pp. 439-444 (1982).
    93.W. J. Tomlinson and H. G. Rhodes, Journal of Materials Science, Vol. 22(5), pp. 1769-1772 (1987).
    94.J. Haimovich, Welding Research Supplement, March, pp. 102s-111s (1989).
    95.C. Y. Lee and K. L. Lin, Thin Solid Films, Vol. 249, pp. 201-206 (1994).
    96.S. Bader, W. Gust and H. Hieber, Acta Metallurgica Materialia, Vol. 43(1), pp. 329-337 (1994).
    97.D. Gur and M. Bamberger, Acta Materialia, Vol. 46(14), pp. 4917-4923 (1998).
    98.P. J. Kay and C. A. Mackay, Transactions of the Institute of Metal Finishing, Vol. 54, pp. 68-74 (1976).
    99.S.-W. Chen, S.-H. Wu and S.-W. Lee, Journal of Electronic Materials, Vol. 32 (11), pp. 1188-1194 (2003).
    100. S. K. Kang, R. S. Rai and S. Purushothaman, Journal of Electronic Materials, Vol. 25(7), pp. 1113-1120 (1996).
    101. W. K. Choi and H. M. Lee, Journal of Electronic Materials, Vol. 28(11), pp. 1251-1255 (1999).
    102.T. M. Korhonen, P. Su, S. J. Hong, M.A. Korhonen and C. Y. Li, Journal of Electronic Materials, Vol. 29(10), pp. 1194-1199 (2000).
    103.J. W. Jang , P. G. Kim, K. N. Tu, D. R. Frear and P. Thompson, Journal of Applied Physics, Vol. 85(12), pp. 8456-8463 (1999).
    104.P. L. Liu and J. K. Shang, Journal of Electronic Materials, Vol. 29(5), pp. 622-627 (2000).
    105.Y. D. Jeon and K. W. Paik, 2001 Electronic Components and Technology Conference, pp. 1326-1332 (2001).
    106.J. Y. Park, C. W. Yang, J. S. Ha, C. U. Kim, E. J. Kwon, S. B. Jung, and C. S. Kang, Journal of Electronic Materials, Vol. 30(9), pp. 1165-1170 (2001).
    107.Kumar, M. He, Z. Chen and P.S. Teo, Thin Solid Film, Vol. 462-463, pp. 413-418 (2004).
    108.C. E. Ho, Y. L. Lin, and C. R. Kao, Chemistry of Materials, Vol.14(3), pp. 949-951 (2002).
    109.W. T. Chen, C. E. Ho and C. R. Kao, Journal of Materials Research, Vol. 17(2), pp. 263-266 (2002).
    110.C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, Journal of Electronic Materials, Vol. 31(6), pp. 584-590 (2002).
    111.T. Chen, J. Y. Tsai, Y. L. Lin and C. R. Kao, Journal of SMT, Vol. 15(4), pp. 40-44 (2002).
    112.S. K. Kang, D. Y. Shih, K. Fogel, P. Lauro, M.-J. Yim, G. G. Advocate, Jr., M. Griffin, C. Goldsmith, D. W. Henderson, T. A. Gosselin, D. E. King, J. J. Konrad, A. Sarkhel, and K. J. Puttlitz, IEEE Transactions on Electronic Packaging Manufacturing, Vol. 25(3), pp. 155-161 (2002).
    113.K. S. Kim, S. H. Huh, and K. Suganuma, Journal of Alloys and Compounds, Vol. 352, pp. 226-236 (2003).
    114.M. D. Cheng, S. F. Yen, and T. H. Chuang, Journal of Electronic Materials, Vol. 33(3), pp. 171-180 (2004).
    115.S. J. Wang, J. J. Kao and C. Y. Liu, Journal of Electronic Materials, Vol. 33(10), pp. 1130-1136 (2004).
    116.Sharif, M. N. Islam, and Y. C. Chan, Materials Science and Engineering B, Vol. 113, pp. 184-189 (2004).
    117.J. H. L. Pang, L. Xu, X. Q. Shi, W. Zhou and S. L. Ngoh, Journal of Electronic Materials, Vol. 33(10), pp. 1219-1226 (2004).
    118.W. C. Luo, C. E. Ho, J. Y. Tsai, Y. L. Lin, and C. R. Kao, Materials Science and Engineering A, Vol. 396, pp. 384-391 (2005).
    119.C. E. Ho, Y. W. Lin, S. C. Yang and C. R. Kao, 2005 IEEE/CPMT 10th International Symposium on Advanced Packaging Materials, CA, March 16-18 (2005).
    120.C.-H. Wang and S.-W. Chen, Acta Materialia, Vol. 54, pp. 247-253 (2006).
    121.C.-H. Wang and S.-W. Chen, Metallurgical and Materials Transactions A, Vol. 34A, pp. 2281-2287 (2003).
    122.Liu, Wang, Pin, CALPHAD, Vol. 28, 363-370 (2004).
    123.Watson, Hayes, Journal of Alloys and Compounds, Vol. 320, pp. 199-206 and correspondence with A. Watson (2001).
    124.JCPDS standard number 181391
    125.U. Gosele and K. N. Tu, Journal of Applied Physics, Vol. 66(6), pp. 2619-2626 (1989).
    126.F. Y. Shiau and Y. A. Chang, Applied Physics Letters, Vol. 55(15), pp. 1510-1512 (1989).
    127.R. B. Schwarz and W. L. Johnson, Physical Review Letters, Vol. 51(5), pp. 415-418 (1983).
    128.R. B. Schwarz, K. L. Wong, W. L. Johnson and B. M. Clemens, Journal of Non-crystalline Solids, Vol. 61-62, pp. 129-134 (1984).
    129.B. M. Clemens, W. L. Johnson and R. B. Schwarz, Journal of Non-crystalline Solids, Vol. 61-62, pp. 817-822 (1984).
    130.S. B. Newcomb and K. N. Tu, Applied Physics Letters, Vol. 48(21), pp. 1436-1438 (1986).
    131.J. C. Barbour, F. W. Saris, M. Wastasi and J. W. Mayer, Physical Review B, Vol. 32(2), pp. 1363-1365 (1985).
    132.H. Schroder, K. Samwer and U. Koster, Physical Review Letters, Vol. 54(3), pp. 197-200 (1985).
    133.M. Van Rossum, M. A. Nicolet and W. L. Johnson, Physical Review B, Vol. 29(10), pp. 5498-5503 (1984).
    134.P. Guilmin, P. Guyot and G. Marchal, Physics Letters A, Vol. 109(4), pp. 174-178 (1985).
    135.S. R. Herd, K. N. Tu and K. Y. Ahn, Applied Physics Letters, Vol. 42(7), pp. 597-599 (1983).
    136.M. Matan, Applied Physics Letters, Vol. 49(5), pp. 257-259 (1986).
    137.K. Holloway and R. Sinclair, Journal of Applied Physics, Vol. 61(4), pp. 1359-1364 (1987).
    138.W. Lur and L. J. Chen, Applied Physics Letters, Vol. 54(13), pp. 1217-1219 (1989).
    139.J. Y. Cheng and L. J. Chen, Applied Physics Letters, Vol. 56(5), pp. 457-459 (1990).
    140.C.-P. Ouyang, J.-J. Chang, J.-F. Wen, L.-C. Tien, J. Hwang and T.-W. Pi, Journal of Applied Physics, Vol. 91(3), pp. 1204-1208 (2002).
    141.T. Sands, C. C. Chang, A. S. Kaplan, V. G. Keramidas, K. M. Kirshnan and J. Washburn, Applied Physics Letters, Vol. 50(19), pp. 1346-1348 (1987).
    142.R. Caron-Popowich, J. Washburn, T. Sands and A. S. Kaplan, Journal of Applied Physics, Vol. 64(10), pp. 4909-4913 (1988).
    143.JCPDS standard 87-0712
    144.JCPDS standard 04-0845
    145.JCPDS standard 04-0846
    146.JCPDS standard 04-0851
    147.Electronic Thin Film Science: for electrical engineers and materials scientists, by K. N. Tu, J. W. Mayer, L. C. Feldman, Macmillan Publishing Company, New York, pp. 246-280 (1992).
    148.R. E. Liesegang, Naturwissenschaften, Vol. 11. pp. 353 (1896).
    149.R. E. Liesegang, Naturwissenschaften, Vol. 21. pp. 221 (1896).
    150.Carl Wagner, Journal of Colloid Science, Vol. 5, pp. 85-97 (1950).
    151.R. L. Klueh and W. W. Mullins, Acta Metallurgica, Vol. 17, pp. 59-67 (1969).
    152.R. L. Klueh and W. W. Mullins, Acta Metallurgica, Vol. 17, pp. 69-76 (1969).
    153.Y. S. Shen, E. J. Zdanuk and R. H. Krock, Metallurgical Transactions, Vol. 2, pp. 2839-2844 (1971).
    154.V. A. Van Rooijen, E. W. Van Royen, J. Vrijen and S. Radelaar, Acta Metallurgica, Vol. 23, pp. 987-995 (1975).
    155.D. L. Douglass, Baizhao Zhu and F. Gesmundo, Oxidation of Metals, Vol. 38, pp. 365-384 (1992).
    156.Kazimierz Osinski, Anton W. Vriend, Guillaume F. Bastin and J. J. van Loo, Z. Metallkde. Vol. 73(4), pp. 258-261 (1982).
    157.F. J. J. van Loo and K. Osinski, Fundamentals and Applications of Ternary Diffusion, Pergamon Press, Oxford, pp. 109 (1990).
    158.M. R. Rijnders and F. J. J. van Loo, Scripta Metallurgica et Materialia, Vol. 32(12), pp. 1931-1935 (1995).
    159.S. F. Dunaev and S. A. Zver’kov, Journal of Less-Common Metals, Vol. 153, pp. 143-150 (1989).
    160.M. R. Jackson, R. L. Mehan, A. M. Davis and E. L. Hall, Metallurgical Transactions A, Vol. 14A, pp. 355-364 (1983).
    161.Rene C. J. Schiepers, F. J. J. van Loo and Gijsbertus de With, Journal of American Ceramic society, Vol. 71(6), pp. C-284-C-287 (1988).
    162.T. C. Chou, Journal of Materials Research, Vol. 5(3), pp. 601-608 (1990).
    163.M. R. Rijnders, A. A. Kodentsov, J. A. van Beek, J. van den Akker and F. J. J. van Loo, Solid State Ionics, Vol. 95, pp. 51-59 (1997).
    164.Fuh-Yuarn Shiau and Y. Austin Chang, Materials Chemistry and Physics, Vol. 32, pp. 300-309 (1992).
    165.C. R. Kao and Y. A. Chang, Acta Metallurgica et Materialia, Vol. 41 (12), pp. 3463-3472 (1993).
    166.K.J. Ronka, F.J.J. van Loo and J.K. Kivilahti, Scripta Materialia, Vol. 37(10), pp. 1575-1581 (1997).
    167.K. J. Schulz and Y. A. Chang, Materials Science and Engineering B, Vol. 12(3), pp. 223-235 (1992).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE