簡易檢索 / 詳目顯示

研究生: 蔡明翰
Tsai, Ming-Han
論文名稱: 利用金屬濕蝕刻後製程於新型CMOS-MEMS三軸加速度計之開發
Design and Implementation of CMOS-MEMS Tri-axis Accelerometers Using Metal Wet-etching Process
指導教授: 方維倫
Fang, Weileun
口試委員: 張培仁
Chang, Pei-Zen
盧向成
Lu, Michael S.-C
李昇憲
Lee, Sheng-Shian
謝哲偉
Hsieh, Jerwei
吳名清
Wu, Ming-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 138
中文關鍵詞: 金屬濕蝕刻三軸加速度計
外文關鍵詞: metal wet-etching, 3-axis accelerometer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以標準CMOS製程與金屬濕蝕刻後製程來設計並製造三軸加速度計,以往在學術界所提出之CMOS-MEMS元件大多使用乾蝕刻製程為主,其結構設計以及後製程線寬受限於製程方法而僅能有平面方向的結構設計,本研究提出一金屬濕蝕刻後製程與元件設計方法,除了可輕易定義平面方向的幾何形狀外,亦可選擇性的底切任一金屬層,因此本製程在結構設計上相對於乾蝕刻僅能定義深度方向具有更高之靈活性,並且此製程能夠充分利用CMOS製程的極小線寬優勢作為電容感測之間隙,可充分提高感測電容的大小,進而提升元件之靈敏度。本研究首先利用結構獨立之同平面與出平面加速度計設計來驗證此製程之可行性,藉由極小線寬以及良好底切的蝕刻能力,使得此加速度設計能夠有遠高於一般乾蝕刻加速度計的元件效能,接下來更進而利用此製程提出兩種不同之三軸單一質量塊加速度計設計,根據其整合方式可分為平面式整合與垂直式整合,平面式整合利用其濕蝕刻線寬優勢將三軸感測電極整合在單一質量塊周圍,其結構尺寸僅有500x500um2;垂直式整合則是利用多層薄膜之特色同時整合同平面與出平面電極於單一電極結構上,同時其感測方式依然能夠為氣密閉合與全差分之架構,由於垂直整合感測電極的設計,三軸感測電極的數量不會隨著元件面積縮小而減少,因此元件能夠維持與單軸加速度計相同,而其結構面積更能夠縮小至400x400um2之等級,本研究所提出之加速度計結構尺寸不僅能與現有商品化之加速度計競爭,使CMOS-MEMS加速度計具有更高的成本競爭力。


    This thesis based on the standard CMOS process and post CMOS metal wet-etching process to design and implement 3-axis CMOS-MEMS accelerometers. Typical CMOS-MEMS devices in academia typically adopted dry-etching process for structure geometry define and release. The design can only planar geometry and line width capabilities are restricted by the post CMOS process. This study proposed a design methodology using post CMOS metal wet-etching process. In addition to easily define the planar geometry, the undercut of metal layers is also achievable. Thus, higher design flexibility for CMOS-MEMS devices is achieved. Moreover, this process can fully utilize the CMOS line width to enhance the performance of CMOS-MEMS capacitive devices.
    Firstly, a metal wet-etching based CMOS-MEMS in-plane and out-of-plane accelerometers are designed to verify the feasibility of this process. Using the small line width of CMOS process and the thickness of metal layer as capacitive sensing gap, the metal wet-etching based accelerometers have ultra-high performance compared with dry-etching ones. This study also proposed planar and vertical integration method to reduce the chip size. Planar integration design takes advantage of the line width ability to integrate the 3-axis sensing electrodes around the proof mass. Vertical integration method utilize the feature of multi-layer stacking of CMOS process to integrate the in-plane and out-of-plane sensing electrodes vertically. Moreover, the sensing scheme can still be the fully-differential and gap-closing sensing types. The structure area is significantly reduced but the number of sensing electrodes is still maintained.

    第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-2.1 微機電加速度計感測型態 2 1-2.2 微機電電容式加速度計製程分類 5 1-2.3 CMOS-MEMS製程分類 8 1-3 研究動機與目的 9 第二章 加速度計原理與分析 22 2-1 單軸加速度計機械結構操作原理 22 2-2 機械與電路介面 26 2-3 電容感測電路架構與雜訊分析 28 2-4 機電系統整合之暫態與穩態分析 29 第三章 濕蝕刻三軸加速度計 39 3-1 濕蝕刻三軸加速度計結構設計與模擬 39 3-1.1 質量塊設計 39 3-1.2 彈簧設計 40 3-1.3 感測電極設計與模擬 40 3-2 全差分感測架構設計 41 3-3 製程流程與結果 42 3-4 元件性能量測與討論 44 3-5 總結 45 第四章 平面整合型態之三軸加速度計 60 4-1 平面整合之三軸加速度計設計與模擬 60 4-1.1 質量塊設計 60 4-1.2 三軸彈簧設計 61 4-1.3 三軸感測電極設計 61 4-2 平面整合三軸加速度計製造 62 4-3平面整合三軸加速度計量測與分析 63 4-4 總結 65 第五章 垂直整合之三軸加速度計 76 5-1 加速度計結構設計與模擬 76 5-1.1 質量塊設計 76 5-1.2 三軸彈簧設計 77 5-1.3 三軸感測電極設計 78 5-1.4 三軸全差分感測與解耦合設計 79 5-2 垂直整合三軸加速度計之製程流程 82 5-3 元件性能量測與討論 83 5-4 總結 85 第六章 成果總結與未來研究方向 98 參考文獻 102 附錄A:低熱變形加速度計設計 111 A-1低熱變形CMOS-MEMS加速度計 111 A-2 低熱變形CMOS-MEMS加速度計結構設計 112 A-3 低熱變形CMOS-MEMS加速度計熱變形模擬 113 A-4 製程流程與量測結果 114 A-5 加速度計與封裝設計之整合 115 附錄B 晶圓級低溫氣密封裝設計 125 B-1 微機電加速度計封裝技術 125 B-2 金屬密封封裝設計與模擬 126 B-3 製程流程與結果 128 論文發表 139 圖目錄 圖1-1 微機電元件發展流程與應用 11 圖1-2典型電容式加速度計感測方式示意圖[22] 12 圖1-3 壓阻式加速度計剖面圖[23] 12 圖1-4 壓電式加速度計剖面圖[24] 12 圖1-5熱感式加速度計[25] 13 圖1-6穿隧式加速度計剖面圖 [19-20] 13 圖1-7振動式加速度計[21] 13 圖1-8 (a) 垂直式加速度計之感測架構;(b)側向式加速度計之感測架構 [32] 14 圖1-9 利用梳狀電極感測出平面加速度產生的電容變化 [40] 14 圖1-10 扭轉的結構下擺放感測電極以感測出平面訊號 [43] 14 圖1-11 Sandia’s iMEMS (MEMS-First)製程 [50] 15 圖1-12 ADI之三軸獨立結構加速度計晶片[51] 15 圖1-13 Sandia’s iMEMS製程之單一質量塊之三軸加速度計[52] 16 圖1-14 透過EDP蝕刻液將為高濃度參雜之單晶矽移除之製程步驟[53] 16 圖1-15 以扭轉方式感測出平面方向的加速度元件設計[53] 16 圖1-16 以全對稱結構之單晶矽加速度計元件 [54] 17 圖1-17 多晶矽回填技術所研製的出平面感測加速度計製程[54] 17 圖1-18 以全對稱結構之單晶矽加速度計元件實體圖 [54] 18 圖1-19 以多晶矽回填技術之三軸方向加速度感測系統架構[55] 18 圖1-20 三軸方向加速度感測系統架構實體圖[55] 19 圖1-21 以SOI製程達成三軸加速度感測之架構 [56] 19 圖1-22 出平面方向差分電極之設計 [57] 19 圖1-23以SOI晶片研製三軸方向皆差分電極設計[60] 20 圖1-24 SiTime使用前段製程之振盪器[73] 20 圖1-25 Analog Device使用中段製程之加速度計[74] 20 圖1-26 後CMOS製程流程圖 [75] 21 圖2-1 加速度計模型圖 32 圖2-2 模型運動時受力圖 33 圖2-3 不同阻尼比之運動型態圖 33 圖2-4 典型共振頻譜圖 34 圖2-5 電容感測示意圖 34 圖2-6 放大因子與操作頻率關係圖 34 圖2-7 單端感測架構示意圖 35 圖2-8 差分感測架構示意圖I 35 圖2-9 差分感測單端輸出架構示意圖II 36 圖2-10 全差分感測架構示意圖 36 圖2-11 完整系統架構圖 37 圖2-12 機電介面架構示意圖 37 圖2-13 不同Q值狀況的起始暫態響應圖 38 圖2-14 在不同頻率下電壓差異造成穩態震盪圖 38 圖3-1 三軸加速度計設計示意圖 47 圖3-2 質量塊設計剖面圖 48 圖3-3 彈簧設計概念上視圖 48 圖3-4 彈簧接點與剖面圖 49 圖3-5 感測電極設計示意圖 49 圖3-6 同平面感測電極模擬圖 50 圖3-7 出平面電極蝕刻示意圖 50 圖3-8 同平面加速計全差分繞線示意圖 51 圖3-9 出平面加速度計全差分架構繞線示意圖 51 圖3-10 濕蝕刻引洞設計圖 52 圖3-11 製程流程圖 53 圖3-12 製程結果SEM圖 54 圖3-13 同平面加速度計SEM圖 54 圖3-14 濕蝕刻同平面感測臂剖面圖 55 圖3-15 出平面加速度計SEM圖 55 圖3-16 製程結果光學顯微鏡觀察圖 56 圖3-17 同平面共振頻率量測 56 圖3-18 出平面共振頻率量測圖 57 圖3-19 (a)元件封裝與印刷電路版 (b)量測架設示意圖 57 圖3-20 頻譜分析儀輸出訊號圖 58 圖3-21 (a)同平面加速度計(b)出平面加速度計性能量測圖 58 圖3-22 10mG加速度量測 59 圖4-1 平面整合之三軸加速度計結構示意圖 66 圖4-2 改良面積使用率之設計概念圖 66 圖4-3 彈簧剛性模擬結果圖 67 圖4-4 模態模擬圖 67 圖4-5 感測電極剖面圖 68 圖4-6 同平面與出平面感測電容模擬圖 68 圖4-7 製程流程圖 69 圖4-8 小線寬濕蝕刻設計示意圖 70 圖4-9 平面整合三軸加速度計製程結果圖 70 圖4-10 製程結果圖 71 圖4-11 出平面電極翹曲量測圖 71 圖4-12 同平面電極翹曲量測圖 72 圖4-13 遠離彈簧處之同平面電極翹曲圖 72 圖4-14 接近彈簧處之同平面電極翹曲圖 73 圖4-15 封裝與量測架設圖 73 圖4-16 頻譜量測示意圖 74 圖4-17 X方向感測訊號量測圖 74 圖4-18 Y方向感測訊號量測圖 75 圖4-19 Z方向感測訊號量測圖 75 圖5-1 0.18m CMOS 製程堆疊圖 87 圖5-2 垂直整合三軸加速度計結構示意圖 87 圖5-3 三軸彈簧結構示意圖 88 圖5-4 三軸彈簧剛性模擬圖 88 圖5-5 AA’結構剖面圖 89 圖5-6 BB’ 結構剖面圖 89 圖5-7 感測電容模擬圖 89 圖5-8 同平面全差分感測示意圖 90 圖5-9 出平面全差分感測示意圖 90 圖5-10 出平面加速度耦合至同平面電極感測圖 90 圖5-11同平面加速度互相耦合示意圖 91 圖5-12 同平面與出平面耦合示意圖 91 圖5-13 製程流程圖 92 圖5-14 製程結果SEM圖 93 圖5-15 感測電極剖面SEM圖 93 圖5-16 質量塊翹曲圖 94 圖5-17 感測電極重疊面積量測圖 94 圖5-18 同平面共振頻率量測圖 94 圖5-19 出平面共振頻率圖 95 圖5-20 元件簡易封裝圖 95 圖5-21 量測架設示意圖 95 圖5-23 X方向訊號量測圖 96 圖5-24 Y方向訊號量測圖 96 圖5-25 Z方向訊號量測圖 97 圖5-26 起始電容非對稱示意圖 97 圖6-1 加速度計與壓力計整合示意圖 101 圖6-2 加速度計與穿矽導線整合示意圖 101 圖A-1 多層懸臂樑受熱變形模擬圖 117 圖A-2 典型與純二氧化矽結構剖面示意圖 117 圖A-3 彈簧結構設計示意圖 118 圖A-4 彈簧受熱變形模擬圖 118 圖A-5 彈簧質量塊受熱變形模擬圖 119 圖A-6 製程流程圖 120 圖A-7 製程SEM圖(a)(b)二氧化矽結構與(c)(d)多層膜結構加速度計 121 圖A-8 (a)純二氧化矽結構,(b)多層膜結構受熱表面形貌量測圖 122 圖A-9 加速度計受1G加速度時頻譜分析圖 123 圖A-10 加速度與輸出電壓量測圖 123 圖A-11 製程整合流程圖 124 圖B-1 微機電加速度計封裝剖面圖[94] 130 圖B-2 epoxy 封裝製程流程 130 圖B-3 玻璃膏接合介面SEM圖[94] 131 圖B-4 共晶結合比例與溫度之關係圖[95] 131 圖B-6 保護層受封裝壓力便行模擬圖 132 圖B-7 支撐位置設計示意圖 132 圖B-8 整體封裝示意圖 133 圖B-9 製程流程圖 134 圖B-10 製程完成SEM圖 135 圖B-11 移除封裝薄膜SEM圖 135 圖B-12 封裝薄膜之支撐結構SEM圖 136 圖B-13 封裝薄膜內部橋狀結構SEM圖 136 圖B-14 製程完成薄膜表面形貌量測圖 137 圖B-15 表面濺鍍2m鋁後的表面形貌圖 137 圖B-16 封孔狀況SEM圖 137 圖B-17 剛性量測結果圖 138 表目錄 表2-1 電路規格表 32 表3-1 彈簧剛性公式表 46 表3-2 彈簧剛性模擬結果表 46 表3-3 量測結果表 46 表3-4 效能比較表 47 表5-1 量測結果與比較表 86 表A-1 CMOS製程材料熱膨脹係數與密度表 116 表A-2 加速度計量測結果與比較表 116

    [1] www.ti.com
    [2] www.freescale.com
    [3] www.bosch.com
    [4] www.wii.com
    [5] www.apple.com
    [6] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low g Application,”Sensors and Actuators A, 54, pp 472-476, 1996.
    [7] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma, and M. Esashi, “Three-axis Capacitive Accelerometer with Uniform Axial Sensitivities,” Journal of Micromechanics and Microengineering, 6, pp 431-435, 1996.
    [8] L. C. Spangler, and C. J. Kemp, “ISAAC: Integrate Silicon Automotive Accelerometer,” Sensors and Actuators A, 54, pp 523-529, 1996.
    [9] G. Li, and A. A. Tseng, “Low Stress Packaging of a Micromachined Accelerometer,” IEEE Transactions on Electronics Packaging Manufacturing, 24, N0. 1, pp 18-25, 2001.
    [10] E. Belloy, A. Sayah, and M. A. M. Gijs, “Micromachining of Glass Inertial Sensors,” Journal of Microelectromechanical System, 11, No.1, pp 85-90, 2002.
    [11] W. Weigold, K. Najafi, and S. W. Pang, “Design and Fabrication of Submicrometer, Single Crystal Si Accelerometer,” Journal of Microelectromechanical Systems, 10, No. 4, pp 518-614, 2001.
    [12] H. Seidel, U. Fritsch, R. Gottinger, J. Schalk, J. Walter, and K. Ambaum, “A Piezoresistive Silicon Accelerometer With Monolithically Integrated CMOS-circuitry,” The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX, Transducers '95, Stockholm, Sweden, June 25- 29,1995, pp. 597-600.
    [13] L. M. Roylance and J. B. Angell, “A Batch-Fabricated Silicon Accelerometer,” IEEE Transactions on Electronic Devices,26, pp.1911-1917, 1979.
    [14] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L.Zhang, N.I. Maluf, and T. W. Kenny, “A High-Performance Planar Piezoresistive Accelerometer,” Journal of Microelectromechanical Systems, 9, pp 58-66, 2000.
    [15] D. L. DeVoe, and A. P. Pisano, ”A Fully Surface-Micromachined Piezoelectric Accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1205-1208.
    [16] B. Puers and W. Sansen, “A New Uniaxial Accelerometer in Silicon Based on the Piezojunction Effect,” IEEE Transactions on Electronic Devices, 35, pp.764-770, 1988.
    [17] P. Scheeper, J. O. Gullov, and M. Kofoed, “A Piezoelectric Triaxial Accelerometer,” Journal of Micromechanics and Microengineering, 6, pp 131-133, 1996.
    [18] U. A Dauderstadt, P. M. Sarro, and S. Middelhoek, ”Temperature Dependence and Drift of a Thermal Accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1209-1212.
    [19] C. H. Liu, and T. W. Kenny, ”A High-Precision, Wide-Bandwidth Micromachined Tunneling Accelerometer,” Journal of Microelectromechanical System, 10, Issue: 3, pp. 425 –433, 2001.
    [20] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a High-Sensitivity Micromachined Tunneling Accelerometer with Micro-g Resolution,” Journal of Microelectromechanical Systems, 7, pp 235-244, 1998.
    [21] M. Aikele, K. Bauer, W. Ficker, F. Neubauer, U. Prechtel, J. Schalk, and H. Seidel, “Resonant Accelerometer with Self-Test,” Sensors and Actuators A, 92 , pp. 161-167, 2001.
    [22] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low g Application,”Sensors and Actuators A, 54, pp 472-476, 1996.
    [23] H. Seidel, U. Fritsch, R. Gottinger, J. Schalk, J. Walter, and K. Ambaum, “A Piezoresistive Silicon Accelerometer With Monolithically Integrated CMOS-circuitry,” The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX, Transducers '95, Stockholm, Sweden, June 25- 29,1995, pp. 597-600.
    [24] D. L. DeVoe, and A. P. Pisano, ”A Fully Surface-Micromachined Piezoelectric Accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1205-1208.
    [25] www.memsic.com
    [26] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A Highly Symmetrical Capacitive Micro-Accelerometer with Single Degree-of-Freedom Response,” J. Micromech. Microeng., Vol. 2, pp.104-112, 1992.
    [27] L. Ristic, R. Gutteridge, J. Kung, D. Koury, B. Dunn, and H. Zunino, “A Capacitive Type Accelerometer with Self-Test Feature Based on a Double-Pinned Polysilicon Structure,” Transducer’93, Yokohama, Japan, June 1993, pp. 810-812.
    [28] F. Rudolf, A. Jornod, and P. Benze, “Silicon Microaccelerometers,” Transducer’87, Tokyo, Japan, June 1987, pp. 376-379.
    [29] F. Rudolf, A. Jornod, J. Berqovist, and H. Leuthold, “Precision Accelerometers with g Resolution,” Sensors Actuators, Vol. A21/A23, 1990, pp. 297-302.
    [30] W. Henrion, L. DiSanza, M. Ip, S. Terry, and H. Jerman, “Wide-Dynamic Range Direct Digital Accelerometer,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1990, pp. 153-156.
    [31] Y. de Coulon, T. Smith, J. Hermann, M. Chevroulet, and F. Rudolf, “Design and Test of a Precision Servoaccelerometer with Digital Output,” Transducer’93, Yokohama, Japan, June 1993, pp. 832-835.
    [32] K. Warren, “Navigation Grade Silicon Accelerometer with Sacrificially Etched SIMOX and BESOI Structure,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1994, pp. 69-72.
    [33] N. Yazdi and K. Najafi, “An All-Silicon Single-Wafer Fabrication Technology for Precision Microaccelerometer,” Transducer’97, Chicago, IL, June 1977, pp. 1181-1184.
    [34] K. J. Ma, N. Yazdi, and K. Najafi, “A Bulk-Silicon Capacitive Microaccelerometer with Built-In Overrange and Force Feedback Electrodes,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1994, pp. 160-163.
    [35] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined Inertial Sensors,” Proceedings of IEEE, Vol. 86, No. 8, August 1998, pp. 1640-1659.
    [36] S. J. Sherman, W. K. Tsang, T. A. Core, R. S. Payne, D. E. Quinn, K. H. Chau, J. A. Farash, and S. K. Baum, “A Low-Cost Monolithic Accelerometer: Product/Technology Update,” in Tech. Dig. IEEE Electron Devices Meeting (IEDM’92), Dec. 1992, pp. 160-161.
    [37] B. Boser and R. T. Howe, “Surface Micromachined Accelerometers,” IEEE J. Solid-State Circuits, Vol. 31, pp. 366-375, Mar. 1996.
    [38] K. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low-g Applications,” Transducer’95, Stockholm, Sweden, June 1995, pp. 593-596.
    [39] B. P. van Drieenhuizen, N. Maluf, I. E. Opris, and G. Kovacs, “Force-Balanced Accelerometer with mG Resolution Fabricated Using Silicon Fusion Bonding and Deep Reactive Ion Etching,” Transducer’97, Chicago, IL, June 1997, pp. 1229-1230.
    [40] J. C. Cole, “A New Sense Element Technology for Accelerometer Subsystems,” Transducer’91, San Francisco, CA, June 1997, pp. 93-96.
    [41] L. Spangler, and C. J. Kemp, “ISAAC-Integrated Silicon Automotive Accelerometer,” Transducer’95, Stockholm, Sweden, June 1995, pp. 585-588.
    [42] Selvakumar, F. Ayazi, and K. Najafi, “A High Sensitivity Z-Axis Torsional Silicon Accelerometer” in Tech. Dig. IEEE Int. Electron Device Meeting, San Francisco, CA, Dec. 1996, pp. 765-768.
    [43] A. C. McNeil, G. Li, and D. N. Koury, U.S. Pat. 6845670 B1, Jan. 25, 2005.
    [44] T. Hauck, G. Li, A. McNeil, H. Knoll, M. Ebert, and J. Bagdahn, “Drop Simulation and Stress Analysis of MEMS Devices,” 7th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2006, pp. 1-5.
    [45] F. Xiao, L. Che, B. Xiong, Y. Wang, X. Zhou, Y. Li, and Y. Lin, “A Novel Capacitive Accelerometer with an Eight” Journal of Micromechanics and Microengineering, Vol. 18, April 2008.
    [46] A. McNeil, “Flexible Design Techniques for Polysilicon MEMS Process,” Int. Elect. Manu. Tech. Symposium, 2007, pp. 290-293.
    [47] W. Yun, R. T. Howe, and P. R. Gray, “Surface Micromachined Digitally Force-Balanced Accelerometer with Integrated CMOS Detection Circuitry,” in Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1992, pp. 126-131.
    [48] C. Lu, M. Lemkin, and B. Boser, “A Monolithic Surface Micromachined Accelerometer with Digital Output,” IEEE J. Solid-State Circuit, Vol. 30, pp. 1367-1373, Dec. 1995.
    [49] M. Lemkin, B. Boser, and J. Smith, “A 3-axis Surface Micromachined ΣΔ Accelerometer,” in Tech. Digest Int. Solid-State Circuits Conf. (ISSCC’97), San Francisco, CA, Feb. 1997, pp. 202-203.
    [50] “ADXL05-Monolithic Accelerometer with Signal Conditioning,” Analog Devices, Norwood, MA, datasheet, 1995.
    [51] M. A. Lemkin, M. A. Ortiz, N. Wonglomet, B. E. Boser, and J. H. Smith, “A 3-axis Force Balanced Accelerometer Using a Single Proof-Mass,” Transducer’97, Chicago, IL, June 1997, pp. 1185-1188.
    [52] http://www.mems.sandia.gov/tech-info/mems-overview.html
    [53] Selvakumar, and K. Najafi, “A High-sensitivity A-axis Capacitive Silicon Microaccelerometer with a Torsional Suspension,” Journal of Microelectromechanical Systems, Vol. 7, No. 2, June 1998, pp. 192-200.
    [54] N. Yazdi, and K. Najafi, “An All-Silicon Single-Wafer Micro-g Accelerometer with a Combined Surface and Bulk Micromachining Process,” Journal of Microelectromechanical Systems, Vol. 9, No. 4, December 2000.
    [55] J. Chae, H. Kulah, and K. Najafi, “A Monolithic Three-Axis Micro-g Micromachined Silicon Capacitive Accelerometer,” Journal of Microelectromechanical Systems, Vol. 14, No. 2, April 2005
    [56] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida, “Three-axis SOI Capacitive Accelerometer with PLL C-V Converter,” Sensor and Actuator A, Vol. 75, 1999, pp. 77-85.
    [57] B. V. Amini, S, Pourkamali, and F. Ayazi, “A high resolution, stictionless, CMOS Compatible SOI Accelerometer with Low Noise, LowPower, 0.25m CMOS Interface,” MEMS 2004, Maastricht, Netherlands, Jan. 2004.
    [58] T. Tsuchiya, and H. Funabashi, “A Z-Axis Differential Capacitive SOI Accelerometer with Vertical Comb Electrodes,” Sensor and Actuator A, Vol. 116, 2004, pp. 378-383.
    [59] B. V. Amini, R. Abdolvand, and F. Ayazi, “A 4.5-mW Closed-Loop ΔΣ Micro-Gravity CMOS SOI Accelerometer,” IEEE Journal of Solid-State Circuit, Vol. 41, No. 12, Dec. 2006, pp. 2983-2991.
    [60] R. Abdolvand, B. V. Amini, and F. Ayazi, “Sub-Micro-Gravity In-plane Accelerometer with Reduced Capacitive Gaps and Extra Seismic Mass,” Journal of Microelectromechanical systems, Vol. 16, No. 5, Oct. 2007, pp. 1036-1043.
    [61] H. Hamaguchi, K. Sugano, T. Tsuchiya, and O. Tabata, “A Differential Capacitive Three-Axis SOI Accelerometer Using Vertical Comb Electrodes,” Transducer’07, Lyon, France, June 2007, pp. 147-150.
    [62] T. Tsuchiya, H. Hamaguchi, K. Sugano, and O. Tabata, “Design and Fabrication of a Differential Capacitive Three-Axis SOI Accelerometer Using Vertical Comb Electrodes,” IEEJ Transactions on Electrical and Electronic Engineering, Vol. 4, Apr. 2009, pp. 345-351.
    [63] C.-P. Hsu, M.-C Yip, and W. Fang, “Implementation of Gap-Closing Differential Capacitive Sensing Z-axis Accelerometer on a SOI Wafer,” Journal of Micromech. Microeng., 19, 075006, 2009.
    [64] 徐家保, 清華大學2009年博士論文
    [65] J.M. Bustillo, G.K. Fedder, C.T.-C. Nguyen, and R. T. Howe, “ Process Technology for the Modular Integration of CMOS and Polysilicon Microstructures,” Microsystem technology 1994, vol.1, pp. 130-141.
    [66] M. A. Lemkin, T. N. Juneau, W. A. Clark, T. A. Roessig, T. J. Brosnihan, “A Low Noise Digital Accelerometer Using Integrated SOI-MEMS Yechnology,” Transducers’ 99, pp.1294-1297.
    [67] H. Luo, G. K. Fedder, and L. R. Carley, “A 1 mG Lateral CMOS-MEMS Accelerometer,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 502-507.
    [68] H. Xie, and G. K. Fedder, “A CMOS Z-Axis Capacitive Accelerometer with Comb-Finger Sensing,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 496-501.
    [69] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder, “A Lateral Capacitive CMOS Accelerometer with Structural Curl Compensation,” IEEE MEMS’99, Orlando, FL, Jan. 17-21, 1999, pp. 606-611.
    [70] J. Wu, G. K. Fedder, and L.R. Carley, “A Low-Noise Low-Offset Chopper-Stabilized Capacitive-Readout Amplifier for CMOS-MEMS Accelerometers”, Digest of IEEE International Solid-State Circuits Conference, 1, 2002, pp. 428-478.
    [71] J.M. Tsai, and G.K. Fedder, “Mechanical Noise-Limited CMOS-MEMS Accelerometers,” IEEE MEMS’05, Miami Beach, FL, Jan.30-Feb. 3, 2005, pp. 630-633.
    [72] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, ” Post-CMOS Processing for High-Aspect-Ratio Integrated Silicon Microstructures,” Journal of Microelectromechanical Systems, 11, pp. 93-101, 2002.
    [73] SiTime Corporation, http://www.sitime.com/
    [74] Analog devices Inc. http: //www. Analog .com/
    [75] G.K. Fedder, “CMOS-Based Sensors,” IEEE Sensors’05, Irvine, CA, 2005. pp.125-128
    [76] W.-L. Huang, Z. Ren, Y.-W. Lin, H.-Y. Chen, J. Lahann, and C. T.-C. Nguyen, “Fully Monolithic CMOS Nickel Micromechanical Resonator Oscillator,” IEEE MEMS’08, Tucson, AZ, Jan., 2008, pp. 10-13.
    [77] H.-H. Tsai, C.-F. Lin, Y.-Z. Juang, I.-L. Wang, Y.-C. Lin, R.-L Wang, and H.-Y. Lin, “Multiple Type Biosensors Fabricated Using the CMOS BioMEMS Platform,” Sensors and Actuators B, 144, pp. 407-412, 2010.
    [78] C.-M. Sun, M.-H. Tsai, C. Wang, Y.-C. Liu, and W. Fang, “Implementation of a Monolithic TPMS Using CMOS-MEMS Technique,” IEEE Transducers’09, Denver, CO, June, 2009, pp. 1730-1733.
    [79] H. Lakdawala, and G. K. Fedder, “Analysis of Temperature-Dependent Residual Stress Gradients in CMOS Micromachined Structure,” IEEE Transducers’99, Sendai, Japan, June, 1999.
    [80] M.Hill, C. O’ Mahony, R. Duane, and A. Mathewson, “Performance and Reliability of Post-CMOS Metal/Oxide MEMS for RF Application,” Journal of Micromech. and Microeng., 13, pp. S131-S138, 2003.
    [81] M. Dardalhone, V. Beroulle, L. Latorre, P. Nouet, G. Perez, J.M. Nicot, and C. Oudea, “Reliability Analysis of CMOS MEMS Structures Obtained by Front Side Bulk Micromachining,” Microelectronics Reliability, 42, pp. 1777-1782, 2002.
    [82] J. Wu, G. K. Fedder, and R. L. Carley, “A Low-Noise Low-Offset Capacitive Sensing Amplifier for a 50g/rtHz Monolithic CMOS MEMS Accelerometer,” IEEE Journal of Solid-State Circuits, 39, pp. 722-730, 2004.
    [83] D. Fang, “Low-Noise and Low-Power Interface Circuits Design for Integrated CMOS-MEMS Inertial Sensors,” Ph.D. Dissertation at university of Florida, 2006.
    [84] H. Qu, D. Fang, H. Xie, “A Monolithic CMOS-MEMS 3-Axis Accelerometer With a Low-Noise, Low-Power Dual-Chopper Amplifier,” IEEE Sensors Journal, 8, pp. 1511-1518, 2008.
    [85] Chih-Ming Sun, Chuanwei Wang, and Weileun Fang, “On the sensitivity improvement of CMOS capacitive accelerometer,” Sensors and Actuators A, 141, pp.347-352, 2008.
    [86] Chuanwei Wang, Ming-Han Tsai, Chih-Ming Sun, and Weileun Fang, “A Novel CMOS Out-of-Plane accelerometer with fully differential gap-closing capacitive sensing electrodes,” Journal of Micromechanical and Microengineering, 17, pp.1275-1282, 2007.
    [87] Y. Watanabe, T. Mitsui, T. Mineta, Y. Matsu, and K. Okada, “SOI micromachined 5-axis motion sensor using resonant electrostatic drive and non-resonant capacitive detection mode,” Sensors and Actuators A: Physical, vol. 130-131, pp. 116-123, Jan. 2006.
    [88] Y. Watanabe, T. Mitsui, T. Mineta, Y. Matsu, and K. Okada, “Five Axes Motion with Electrostatic Drive and Capacitive Detection Fabricated by Silicon Bulk Micromachining,” Sensors and Actuators A: Physical, vol. 97-98, pp. 109-115, Jan. 2002.
    [89] Coventor, Inc. Material database
    [90] http://en.wikipedia.org/wiki/Yield_(engineering)
    [91] Y.-C. Liu, M.-H. Tsai, T.-L. Tang, and W. Fang, “Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers,” J. Micromech. Microeng., 21, 105005, 2011.
    [92] H. Lakdawala, G. K. Fedder, “Temperature Stabilization of CMOS Capacitive Accelerometers,” J. Micromech. Microeng., 14, pp. 559-566, 2004.
    [93] T.-H. Yen,
    [94] www.chipworks.com
    [95] L. Lin, “MEMS Post-Packaging by Localized Heating and Bonding,” IEEE Trans. on Advanced Packaging, 23, pp. 608-616, 2000.
    [96] R. L. Smith, and S. D. Collins, “Micromachined Packaging for Chemical Microsensors,” IEEE Trans. on electron Devices, 35, pp. 787-792, 1988.
    [97] R. Knechtel, “Glass Frit Bonding: an Universal Technology for Wafer Level Encapsulation and Packaging,” Microsystem Technology, 12, pp. 63-68, 2005.
    [98] http://en.wikipedia.org/wiki/Eutectic_bonding
    [99] S. S. Nasiri, A. F. Flannery, “Method of Making an X-Y Axis Duo-mass Tuning Fork Gyroscope With Vertically Integrated Electronics and Wafer-Scale Hermetic Packaging,” US Patent No. 6,939,473 B2
    [100] R. N. Candler, W. Park, M. Hopcroft, B. Kim, T. W. Kenny, “Hydrogen Diffusion and Pressure Control of Encapsulated MEMS Resonator,” IEEE Transducers’05, Seoul, Korea, June, 2005, pp. 920-923.
    [101] “MPXY8300-Tire Pressure Monitor System,” Freescale Semiconductor Inc., Austin, Texas, datasheet, 2009.
    [102] http://en.wikipedia.org/wiki/Barometric_formula
    [103] Y. Temiz, M. Zervas, C. Guiducci, and Y. Leblebici, “Die-Level TSV Fabrication Platform for CMOS-MEMS Integration,” IEEE Transducers’ 11, Beijing, China, June, 2011, pp. 1799-1802

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE