研究生: |
蔡明翰 Tsai, Ming-Han |
---|---|
論文名稱: |
利用金屬濕蝕刻後製程於新型CMOS-MEMS三軸加速度計之開發 Design and Implementation of CMOS-MEMS Tri-axis Accelerometers Using Metal Wet-etching Process |
指導教授: |
方維倫
Fang, Weileun |
口試委員: |
張培仁
Chang, Pei-Zen 盧向成 Lu, Michael S.-C 李昇憲 Lee, Sheng-Shian 謝哲偉 Hsieh, Jerwei 吳名清 Wu, Ming-Chin |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 138 |
中文關鍵詞: | 金屬濕蝕刻 、三軸加速度計 |
外文關鍵詞: | metal wet-etching, 3-axis accelerometer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以標準CMOS製程與金屬濕蝕刻後製程來設計並製造三軸加速度計,以往在學術界所提出之CMOS-MEMS元件大多使用乾蝕刻製程為主,其結構設計以及後製程線寬受限於製程方法而僅能有平面方向的結構設計,本研究提出一金屬濕蝕刻後製程與元件設計方法,除了可輕易定義平面方向的幾何形狀外,亦可選擇性的底切任一金屬層,因此本製程在結構設計上相對於乾蝕刻僅能定義深度方向具有更高之靈活性,並且此製程能夠充分利用CMOS製程的極小線寬優勢作為電容感測之間隙,可充分提高感測電容的大小,進而提升元件之靈敏度。本研究首先利用結構獨立之同平面與出平面加速度計設計來驗證此製程之可行性,藉由極小線寬以及良好底切的蝕刻能力,使得此加速度設計能夠有遠高於一般乾蝕刻加速度計的元件效能,接下來更進而利用此製程提出兩種不同之三軸單一質量塊加速度計設計,根據其整合方式可分為平面式整合與垂直式整合,平面式整合利用其濕蝕刻線寬優勢將三軸感測電極整合在單一質量塊周圍,其結構尺寸僅有500x500um2;垂直式整合則是利用多層薄膜之特色同時整合同平面與出平面電極於單一電極結構上,同時其感測方式依然能夠為氣密閉合與全差分之架構,由於垂直整合感測電極的設計,三軸感測電極的數量不會隨著元件面積縮小而減少,因此元件能夠維持與單軸加速度計相同,而其結構面積更能夠縮小至400x400um2之等級,本研究所提出之加速度計結構尺寸不僅能與現有商品化之加速度計競爭,使CMOS-MEMS加速度計具有更高的成本競爭力。
This thesis based on the standard CMOS process and post CMOS metal wet-etching process to design and implement 3-axis CMOS-MEMS accelerometers. Typical CMOS-MEMS devices in academia typically adopted dry-etching process for structure geometry define and release. The design can only planar geometry and line width capabilities are restricted by the post CMOS process. This study proposed a design methodology using post CMOS metal wet-etching process. In addition to easily define the planar geometry, the undercut of metal layers is also achievable. Thus, higher design flexibility for CMOS-MEMS devices is achieved. Moreover, this process can fully utilize the CMOS line width to enhance the performance of CMOS-MEMS capacitive devices.
Firstly, a metal wet-etching based CMOS-MEMS in-plane and out-of-plane accelerometers are designed to verify the feasibility of this process. Using the small line width of CMOS process and the thickness of metal layer as capacitive sensing gap, the metal wet-etching based accelerometers have ultra-high performance compared with dry-etching ones. This study also proposed planar and vertical integration method to reduce the chip size. Planar integration design takes advantage of the line width ability to integrate the 3-axis sensing electrodes around the proof mass. Vertical integration method utilize the feature of multi-layer stacking of CMOS process to integrate the in-plane and out-of-plane sensing electrodes vertically. Moreover, the sensing scheme can still be the fully-differential and gap-closing sensing types. The structure area is significantly reduced but the number of sensing electrodes is still maintained.
[1] www.ti.com
[2] www.freescale.com
[3] www.bosch.com
[4] www.wii.com
[5] www.apple.com
[6] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low g Application,”Sensors and Actuators A, 54, pp 472-476, 1996.
[7] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma, and M. Esashi, “Three-axis Capacitive Accelerometer with Uniform Axial Sensitivities,” Journal of Micromechanics and Microengineering, 6, pp 431-435, 1996.
[8] L. C. Spangler, and C. J. Kemp, “ISAAC: Integrate Silicon Automotive Accelerometer,” Sensors and Actuators A, 54, pp 523-529, 1996.
[9] G. Li, and A. A. Tseng, “Low Stress Packaging of a Micromachined Accelerometer,” IEEE Transactions on Electronics Packaging Manufacturing, 24, N0. 1, pp 18-25, 2001.
[10] E. Belloy, A. Sayah, and M. A. M. Gijs, “Micromachining of Glass Inertial Sensors,” Journal of Microelectromechanical System, 11, No.1, pp 85-90, 2002.
[11] W. Weigold, K. Najafi, and S. W. Pang, “Design and Fabrication of Submicrometer, Single Crystal Si Accelerometer,” Journal of Microelectromechanical Systems, 10, No. 4, pp 518-614, 2001.
[12] H. Seidel, U. Fritsch, R. Gottinger, J. Schalk, J. Walter, and K. Ambaum, “A Piezoresistive Silicon Accelerometer With Monolithically Integrated CMOS-circuitry,” The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX, Transducers '95, Stockholm, Sweden, June 25- 29,1995, pp. 597-600.
[13] L. M. Roylance and J. B. Angell, “A Batch-Fabricated Silicon Accelerometer,” IEEE Transactions on Electronic Devices,26, pp.1911-1917, 1979.
[14] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L.Zhang, N.I. Maluf, and T. W. Kenny, “A High-Performance Planar Piezoresistive Accelerometer,” Journal of Microelectromechanical Systems, 9, pp 58-66, 2000.
[15] D. L. DeVoe, and A. P. Pisano, ”A Fully Surface-Micromachined Piezoelectric Accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1205-1208.
[16] B. Puers and W. Sansen, “A New Uniaxial Accelerometer in Silicon Based on the Piezojunction Effect,” IEEE Transactions on Electronic Devices, 35, pp.764-770, 1988.
[17] P. Scheeper, J. O. Gullov, and M. Kofoed, “A Piezoelectric Triaxial Accelerometer,” Journal of Micromechanics and Microengineering, 6, pp 131-133, 1996.
[18] U. A Dauderstadt, P. M. Sarro, and S. Middelhoek, ”Temperature Dependence and Drift of a Thermal Accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1209-1212.
[19] C. H. Liu, and T. W. Kenny, ”A High-Precision, Wide-Bandwidth Micromachined Tunneling Accelerometer,” Journal of Microelectromechanical System, 10, Issue: 3, pp. 425 –433, 2001.
[20] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a High-Sensitivity Micromachined Tunneling Accelerometer with Micro-g Resolution,” Journal of Microelectromechanical Systems, 7, pp 235-244, 1998.
[21] M. Aikele, K. Bauer, W. Ficker, F. Neubauer, U. Prechtel, J. Schalk, and H. Seidel, “Resonant Accelerometer with Self-Test,” Sensors and Actuators A, 92 , pp. 161-167, 2001.
[22] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low g Application,”Sensors and Actuators A, 54, pp 472-476, 1996.
[23] H. Seidel, U. Fritsch, R. Gottinger, J. Schalk, J. Walter, and K. Ambaum, “A Piezoresistive Silicon Accelerometer With Monolithically Integrated CMOS-circuitry,” The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX, Transducers '95, Stockholm, Sweden, June 25- 29,1995, pp. 597-600.
[24] D. L. DeVoe, and A. P. Pisano, ”A Fully Surface-Micromachined Piezoelectric Accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1205-1208.
[25] www.memsic.com
[26] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A Highly Symmetrical Capacitive Micro-Accelerometer with Single Degree-of-Freedom Response,” J. Micromech. Microeng., Vol. 2, pp.104-112, 1992.
[27] L. Ristic, R. Gutteridge, J. Kung, D. Koury, B. Dunn, and H. Zunino, “A Capacitive Type Accelerometer with Self-Test Feature Based on a Double-Pinned Polysilicon Structure,” Transducer’93, Yokohama, Japan, June 1993, pp. 810-812.
[28] F. Rudolf, A. Jornod, and P. Benze, “Silicon Microaccelerometers,” Transducer’87, Tokyo, Japan, June 1987, pp. 376-379.
[29] F. Rudolf, A. Jornod, J. Berqovist, and H. Leuthold, “Precision Accelerometers with g Resolution,” Sensors Actuators, Vol. A21/A23, 1990, pp. 297-302.
[30] W. Henrion, L. DiSanza, M. Ip, S. Terry, and H. Jerman, “Wide-Dynamic Range Direct Digital Accelerometer,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1990, pp. 153-156.
[31] Y. de Coulon, T. Smith, J. Hermann, M. Chevroulet, and F. Rudolf, “Design and Test of a Precision Servoaccelerometer with Digital Output,” Transducer’93, Yokohama, Japan, June 1993, pp. 832-835.
[32] K. Warren, “Navigation Grade Silicon Accelerometer with Sacrificially Etched SIMOX and BESOI Structure,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1994, pp. 69-72.
[33] N. Yazdi and K. Najafi, “An All-Silicon Single-Wafer Fabrication Technology for Precision Microaccelerometer,” Transducer’97, Chicago, IL, June 1977, pp. 1181-1184.
[34] K. J. Ma, N. Yazdi, and K. Najafi, “A Bulk-Silicon Capacitive Microaccelerometer with Built-In Overrange and Force Feedback Electrodes,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1994, pp. 160-163.
[35] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined Inertial Sensors,” Proceedings of IEEE, Vol. 86, No. 8, August 1998, pp. 1640-1659.
[36] S. J. Sherman, W. K. Tsang, T. A. Core, R. S. Payne, D. E. Quinn, K. H. Chau, J. A. Farash, and S. K. Baum, “A Low-Cost Monolithic Accelerometer: Product/Technology Update,” in Tech. Dig. IEEE Electron Devices Meeting (IEDM’92), Dec. 1992, pp. 160-161.
[37] B. Boser and R. T. Howe, “Surface Micromachined Accelerometers,” IEEE J. Solid-State Circuits, Vol. 31, pp. 366-375, Mar. 1996.
[38] K. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low-g Applications,” Transducer’95, Stockholm, Sweden, June 1995, pp. 593-596.
[39] B. P. van Drieenhuizen, N. Maluf, I. E. Opris, and G. Kovacs, “Force-Balanced Accelerometer with mG Resolution Fabricated Using Silicon Fusion Bonding and Deep Reactive Ion Etching,” Transducer’97, Chicago, IL, June 1997, pp. 1229-1230.
[40] J. C. Cole, “A New Sense Element Technology for Accelerometer Subsystems,” Transducer’91, San Francisco, CA, June 1997, pp. 93-96.
[41] L. Spangler, and C. J. Kemp, “ISAAC-Integrated Silicon Automotive Accelerometer,” Transducer’95, Stockholm, Sweden, June 1995, pp. 585-588.
[42] Selvakumar, F. Ayazi, and K. Najafi, “A High Sensitivity Z-Axis Torsional Silicon Accelerometer” in Tech. Dig. IEEE Int. Electron Device Meeting, San Francisco, CA, Dec. 1996, pp. 765-768.
[43] A. C. McNeil, G. Li, and D. N. Koury, U.S. Pat. 6845670 B1, Jan. 25, 2005.
[44] T. Hauck, G. Li, A. McNeil, H. Knoll, M. Ebert, and J. Bagdahn, “Drop Simulation and Stress Analysis of MEMS Devices,” 7th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2006, pp. 1-5.
[45] F. Xiao, L. Che, B. Xiong, Y. Wang, X. Zhou, Y. Li, and Y. Lin, “A Novel Capacitive Accelerometer with an Eight” Journal of Micromechanics and Microengineering, Vol. 18, April 2008.
[46] A. McNeil, “Flexible Design Techniques for Polysilicon MEMS Process,” Int. Elect. Manu. Tech. Symposium, 2007, pp. 290-293.
[47] W. Yun, R. T. Howe, and P. R. Gray, “Surface Micromachined Digitally Force-Balanced Accelerometer with Integrated CMOS Detection Circuitry,” in Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1992, pp. 126-131.
[48] C. Lu, M. Lemkin, and B. Boser, “A Monolithic Surface Micromachined Accelerometer with Digital Output,” IEEE J. Solid-State Circuit, Vol. 30, pp. 1367-1373, Dec. 1995.
[49] M. Lemkin, B. Boser, and J. Smith, “A 3-axis Surface Micromachined ΣΔ Accelerometer,” in Tech. Digest Int. Solid-State Circuits Conf. (ISSCC’97), San Francisco, CA, Feb. 1997, pp. 202-203.
[50] “ADXL05-Monolithic Accelerometer with Signal Conditioning,” Analog Devices, Norwood, MA, datasheet, 1995.
[51] M. A. Lemkin, M. A. Ortiz, N. Wonglomet, B. E. Boser, and J. H. Smith, “A 3-axis Force Balanced Accelerometer Using a Single Proof-Mass,” Transducer’97, Chicago, IL, June 1997, pp. 1185-1188.
[52] http://www.mems.sandia.gov/tech-info/mems-overview.html
[53] Selvakumar, and K. Najafi, “A High-sensitivity A-axis Capacitive Silicon Microaccelerometer with a Torsional Suspension,” Journal of Microelectromechanical Systems, Vol. 7, No. 2, June 1998, pp. 192-200.
[54] N. Yazdi, and K. Najafi, “An All-Silicon Single-Wafer Micro-g Accelerometer with a Combined Surface and Bulk Micromachining Process,” Journal of Microelectromechanical Systems, Vol. 9, No. 4, December 2000.
[55] J. Chae, H. Kulah, and K. Najafi, “A Monolithic Three-Axis Micro-g Micromachined Silicon Capacitive Accelerometer,” Journal of Microelectromechanical Systems, Vol. 14, No. 2, April 2005
[56] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida, “Three-axis SOI Capacitive Accelerometer with PLL C-V Converter,” Sensor and Actuator A, Vol. 75, 1999, pp. 77-85.
[57] B. V. Amini, S, Pourkamali, and F. Ayazi, “A high resolution, stictionless, CMOS Compatible SOI Accelerometer with Low Noise, LowPower, 0.25m CMOS Interface,” MEMS 2004, Maastricht, Netherlands, Jan. 2004.
[58] T. Tsuchiya, and H. Funabashi, “A Z-Axis Differential Capacitive SOI Accelerometer with Vertical Comb Electrodes,” Sensor and Actuator A, Vol. 116, 2004, pp. 378-383.
[59] B. V. Amini, R. Abdolvand, and F. Ayazi, “A 4.5-mW Closed-Loop ΔΣ Micro-Gravity CMOS SOI Accelerometer,” IEEE Journal of Solid-State Circuit, Vol. 41, No. 12, Dec. 2006, pp. 2983-2991.
[60] R. Abdolvand, B. V. Amini, and F. Ayazi, “Sub-Micro-Gravity In-plane Accelerometer with Reduced Capacitive Gaps and Extra Seismic Mass,” Journal of Microelectromechanical systems, Vol. 16, No. 5, Oct. 2007, pp. 1036-1043.
[61] H. Hamaguchi, K. Sugano, T. Tsuchiya, and O. Tabata, “A Differential Capacitive Three-Axis SOI Accelerometer Using Vertical Comb Electrodes,” Transducer’07, Lyon, France, June 2007, pp. 147-150.
[62] T. Tsuchiya, H. Hamaguchi, K. Sugano, and O. Tabata, “Design and Fabrication of a Differential Capacitive Three-Axis SOI Accelerometer Using Vertical Comb Electrodes,” IEEJ Transactions on Electrical and Electronic Engineering, Vol. 4, Apr. 2009, pp. 345-351.
[63] C.-P. Hsu, M.-C Yip, and W. Fang, “Implementation of Gap-Closing Differential Capacitive Sensing Z-axis Accelerometer on a SOI Wafer,” Journal of Micromech. Microeng., 19, 075006, 2009.
[64] 徐家保, 清華大學2009年博士論文
[65] J.M. Bustillo, G.K. Fedder, C.T.-C. Nguyen, and R. T. Howe, “ Process Technology for the Modular Integration of CMOS and Polysilicon Microstructures,” Microsystem technology 1994, vol.1, pp. 130-141.
[66] M. A. Lemkin, T. N. Juneau, W. A. Clark, T. A. Roessig, T. J. Brosnihan, “A Low Noise Digital Accelerometer Using Integrated SOI-MEMS Yechnology,” Transducers’ 99, pp.1294-1297.
[67] H. Luo, G. K. Fedder, and L. R. Carley, “A 1 mG Lateral CMOS-MEMS Accelerometer,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 502-507.
[68] H. Xie, and G. K. Fedder, “A CMOS Z-Axis Capacitive Accelerometer with Comb-Finger Sensing,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 496-501.
[69] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder, “A Lateral Capacitive CMOS Accelerometer with Structural Curl Compensation,” IEEE MEMS’99, Orlando, FL, Jan. 17-21, 1999, pp. 606-611.
[70] J. Wu, G. K. Fedder, and L.R. Carley, “A Low-Noise Low-Offset Chopper-Stabilized Capacitive-Readout Amplifier for CMOS-MEMS Accelerometers”, Digest of IEEE International Solid-State Circuits Conference, 1, 2002, pp. 428-478.
[71] J.M. Tsai, and G.K. Fedder, “Mechanical Noise-Limited CMOS-MEMS Accelerometers,” IEEE MEMS’05, Miami Beach, FL, Jan.30-Feb. 3, 2005, pp. 630-633.
[72] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, ” Post-CMOS Processing for High-Aspect-Ratio Integrated Silicon Microstructures,” Journal of Microelectromechanical Systems, 11, pp. 93-101, 2002.
[73] SiTime Corporation, http://www.sitime.com/
[74] Analog devices Inc. http: //www. Analog .com/
[75] G.K. Fedder, “CMOS-Based Sensors,” IEEE Sensors’05, Irvine, CA, 2005. pp.125-128
[76] W.-L. Huang, Z. Ren, Y.-W. Lin, H.-Y. Chen, J. Lahann, and C. T.-C. Nguyen, “Fully Monolithic CMOS Nickel Micromechanical Resonator Oscillator,” IEEE MEMS’08, Tucson, AZ, Jan., 2008, pp. 10-13.
[77] H.-H. Tsai, C.-F. Lin, Y.-Z. Juang, I.-L. Wang, Y.-C. Lin, R.-L Wang, and H.-Y. Lin, “Multiple Type Biosensors Fabricated Using the CMOS BioMEMS Platform,” Sensors and Actuators B, 144, pp. 407-412, 2010.
[78] C.-M. Sun, M.-H. Tsai, C. Wang, Y.-C. Liu, and W. Fang, “Implementation of a Monolithic TPMS Using CMOS-MEMS Technique,” IEEE Transducers’09, Denver, CO, June, 2009, pp. 1730-1733.
[79] H. Lakdawala, and G. K. Fedder, “Analysis of Temperature-Dependent Residual Stress Gradients in CMOS Micromachined Structure,” IEEE Transducers’99, Sendai, Japan, June, 1999.
[80] M.Hill, C. O’ Mahony, R. Duane, and A. Mathewson, “Performance and Reliability of Post-CMOS Metal/Oxide MEMS for RF Application,” Journal of Micromech. and Microeng., 13, pp. S131-S138, 2003.
[81] M. Dardalhone, V. Beroulle, L. Latorre, P. Nouet, G. Perez, J.M. Nicot, and C. Oudea, “Reliability Analysis of CMOS MEMS Structures Obtained by Front Side Bulk Micromachining,” Microelectronics Reliability, 42, pp. 1777-1782, 2002.
[82] J. Wu, G. K. Fedder, and R. L. Carley, “A Low-Noise Low-Offset Capacitive Sensing Amplifier for a 50g/rtHz Monolithic CMOS MEMS Accelerometer,” IEEE Journal of Solid-State Circuits, 39, pp. 722-730, 2004.
[83] D. Fang, “Low-Noise and Low-Power Interface Circuits Design for Integrated CMOS-MEMS Inertial Sensors,” Ph.D. Dissertation at university of Florida, 2006.
[84] H. Qu, D. Fang, H. Xie, “A Monolithic CMOS-MEMS 3-Axis Accelerometer With a Low-Noise, Low-Power Dual-Chopper Amplifier,” IEEE Sensors Journal, 8, pp. 1511-1518, 2008.
[85] Chih-Ming Sun, Chuanwei Wang, and Weileun Fang, “On the sensitivity improvement of CMOS capacitive accelerometer,” Sensors and Actuators A, 141, pp.347-352, 2008.
[86] Chuanwei Wang, Ming-Han Tsai, Chih-Ming Sun, and Weileun Fang, “A Novel CMOS Out-of-Plane accelerometer with fully differential gap-closing capacitive sensing electrodes,” Journal of Micromechanical and Microengineering, 17, pp.1275-1282, 2007.
[87] Y. Watanabe, T. Mitsui, T. Mineta, Y. Matsu, and K. Okada, “SOI micromachined 5-axis motion sensor using resonant electrostatic drive and non-resonant capacitive detection mode,” Sensors and Actuators A: Physical, vol. 130-131, pp. 116-123, Jan. 2006.
[88] Y. Watanabe, T. Mitsui, T. Mineta, Y. Matsu, and K. Okada, “Five Axes Motion with Electrostatic Drive and Capacitive Detection Fabricated by Silicon Bulk Micromachining,” Sensors and Actuators A: Physical, vol. 97-98, pp. 109-115, Jan. 2002.
[89] Coventor, Inc. Material database
[90] http://en.wikipedia.org/wiki/Yield_(engineering)
[91] Y.-C. Liu, M.-H. Tsai, T.-L. Tang, and W. Fang, “Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers,” J. Micromech. Microeng., 21, 105005, 2011.
[92] H. Lakdawala, G. K. Fedder, “Temperature Stabilization of CMOS Capacitive Accelerometers,” J. Micromech. Microeng., 14, pp. 559-566, 2004.
[93] T.-H. Yen,
[94] www.chipworks.com
[95] L. Lin, “MEMS Post-Packaging by Localized Heating and Bonding,” IEEE Trans. on Advanced Packaging, 23, pp. 608-616, 2000.
[96] R. L. Smith, and S. D. Collins, “Micromachined Packaging for Chemical Microsensors,” IEEE Trans. on electron Devices, 35, pp. 787-792, 1988.
[97] R. Knechtel, “Glass Frit Bonding: an Universal Technology for Wafer Level Encapsulation and Packaging,” Microsystem Technology, 12, pp. 63-68, 2005.
[98] http://en.wikipedia.org/wiki/Eutectic_bonding
[99] S. S. Nasiri, A. F. Flannery, “Method of Making an X-Y Axis Duo-mass Tuning Fork Gyroscope With Vertically Integrated Electronics and Wafer-Scale Hermetic Packaging,” US Patent No. 6,939,473 B2
[100] R. N. Candler, W. Park, M. Hopcroft, B. Kim, T. W. Kenny, “Hydrogen Diffusion and Pressure Control of Encapsulated MEMS Resonator,” IEEE Transducers’05, Seoul, Korea, June, 2005, pp. 920-923.
[101] “MPXY8300-Tire Pressure Monitor System,” Freescale Semiconductor Inc., Austin, Texas, datasheet, 2009.
[102] http://en.wikipedia.org/wiki/Barometric_formula
[103] Y. Temiz, M. Zervas, C. Guiducci, and Y. Leblebici, “Die-Level TSV Fabrication Platform for CMOS-MEMS Integration,” IEEE Transducers’ 11, Beijing, China, June, 2011, pp. 1799-1802