研究生: |
魏伯原 Wei, Bo-Yuan |
---|---|
論文名稱: |
TM模態磁旋管非線性與自洽模擬 Nonlinear and self-consistent simulation of TM-mode gyrotrons |
指導教授: |
張存續
Chang, Tsun-Hsu |
口試委員: |
朱國瑞
Chu, Kwo-Ray 洪健倫 Hung, Chien-Lun 葉義生 Yeh, Yi-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 34 |
中文關鍵詞: | 磁旋管 、TM模態 、非線性 、自洽 |
外文關鍵詞: | gyrotron, TM-mode, nonlinear, self-consistent |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁旋振盪器是利用電子迴旋脈射機制(electron cyclotron maser)產生同調電磁波,具有高功率、可連續調頻與寬頻寬的特性,在整個毫米及次毫米波源之研究或應用佔有相當重要的地位與發展潛力。在過去的研究中,大多認為TE模態的效率會高於TM模態磁旋管,因TM模態的縱向電場造成群聚機制的複雜,但在實驗室前期的研究中,分析了TM模態的縱向電場造成不同的群聚機制,結果顯示系統在後退波時會比前進波有更好的表現。
第二章會介紹計算TM模態所需要使用的非線性理論計算公式,分析電子與電磁場交互作用的微分方程式;第三章則是利用非線性理論進行模擬,觀察不同結構的非線性理論行為。
本論文以TM11模態進行非線性理論模擬,並比較在不同的結構下進行比較,試著找出好的能量轉換效率或是更廣的可調頻率。目前的結果,能量轉換效率約為38%,而可調頻率範圍可達約6 GHz。
The transverse magnetic (TM) mode has been considered as the unsuitable waveguide mode for the operation of the gyrotron for a long time. Because of TM mode’s bunching mechanism is more complicate than TE mode. But in early research shows that TM mode is good for backward-wave operation. Unlike the TE modes, the TM modes has z-component of the electric field and it cause backward-wave interaction the azimuthal bunching and axial bunching will have the same bunching point. From this bunching mechanism, this study use TM11 mode and different structure to simulate energy translation efficiency between electrons and electromagnetic wave. For tapered structure, energy translation efficiency is 38% and tunable frequency bandwidth about 6 GHz at velocity ratio of 2.
[1] K. R. Chu, ”The electron cyclotron maser”, Reviews of Modern Physics 76, 489 (2004).
[2] T. H. Chang, W.C. Hang, H.Y. Yao, C. L. Hang, W. C. Chen and B.Y. Su “Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser”, Physics of Plasmas 24, 023302 (2017)
[3] T. H. Chang, H.Y. Yao, B.Y. Su, W.C. Chen and B.Y. Wei, “Nonlinear oscillations of TM-mode gyrotrons,” Physics of Plasmas 24, 122109 (2017)
[4] K. R. Chu, and Anthony T. Lin. "Gain and bandwidth of the gyro-TWT and CARM amplifiers." IEEE transactions on Plasma Science 16.2 (1988): 90-104.
[5] K. R. Chu, Nonlinear Formulation for gyro-TWT & CARM Amplifier.
[6] W. C. Huang, Feasibility Study of the TM Modes for the Electron Cyclotron Maser, Degree Thesis, Physics, National Tsing Hua University, Hsinchu, 2015
[7] N.C. Chen, T.H. Chang, C.P. Yuan, Toshitaka Idehara, and Isamu Ogawa “Theoretical investigation of a high efficiency and broadband subterahertz gyrotron.” , Applied Physics Letters 96, 161501 (2010)
[8] A. T. Lin, Mechanisms of efficiency enhancement in gyrotron backward-wave oscillators with tapered magnetic fields, Physical Review A 46, R4516 (1992).
[9] P. N. Lin, S. H. Kao, G. N. Lin, C. C. Chiu, and K. R. Chu, in Vacuum Electron Sources Conference and Nanocarbon (IVESC), 2010 8th International2010), pp. 150.
[10] T. H. Chang, S. H. Chen, L. R. Barnett, and K. R. Chu, Characterization of Stationary and Nonstationary Behavior in Gyrotron Oscillators, Physical Review Letters 87, 064802 (2001).
[11] B. Y. Su, Self-consistent Nonlinear Simulation for W-band TM11 Mode Gyrotron, Degree Thesis, Physics, National Tsing Hua University, Hsinchu, 2016
[12] C. S. Kou, C. H. Chen, and T. J. Wu, Mechanisms of efficiency enhancement by a tapered waveguide in gyrotron backward wave oscillators, Physical Review E, volume 57, June 1998, No. 6
[13] S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan, and K. R. Chu, Linear and Time-Dependent Behavior of the Gyrotron Backward-Wave Oscillator, Physical Review Letters 89, 268303 (2002).
[14] S. H. Chen, K. R. Chu, and T. H. Chang, Saturated Behavior of the Gyrotron Backward-Wave Oscillator, Physical Review Letters 85, 2633 (2000).
[15] C. Q. Jiao, and J.R. Luo. "A Gyrotron Backward Wave Oscillator Operating in the TM11 Mode with Large-Orbit Electron Beam." Vacuum Electronics Conference, 2007. IVEC'07. IEEE International. IEEE, 2007.