簡易檢索 / 詳目顯示

研究生: 林學楚
Hsueh Chu Lin
論文名稱: 多壁奈米碳管/聚二甲基矽氧烷複合材料機械性質與黏彈性質研究
Mechanical and Viscoelastic Properties of MWNT/PDMS Nanocomposites
指導教授: 葉銘泉
Ming Chuen Yip
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 135
中文關鍵詞: 聚二甲基矽氧烷多壁奈米碳管薄膜潛變
外文關鍵詞: PDMS, MWNT, film, creep
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚二甲基矽氧烷為矽基彈性體高分子,於室溫中屬橡膠態,故機械強度薄弱且具極大延展性,其優點為無毒、生物相容性與優異成型特性…等,近年常被運用於奈米壓印技術領域。薄弱之機械性質常使聚二甲基矽氧烷於轉印過程中產生破壞,為此本論文將具有優異機械性質之奈米碳管添加入聚二甲基矽氧烷中,討論奈米碳管對其機械性質影響性。
    本論文係研究多壁奈米碳管對聚二甲基矽氧烷於拉伸機械性質與黏彈性質影響,含括拉伸測試、潛變測試與連續動態機械分析…等;其中由拉伸測試得知,初始模數隨多壁碳管含量增加而提昇,但破壞應變與破壞應力卻隨多壁碳管含量增加而減少;由連續動態機械分析得知,因碳管添加使儲存模數提昇55%;另由拉伸潛變測試得知,由於碳管添加,使其於聚二甲基矽氧烷內形成稠密的網路,此網路不但可減緩潛變過程之應變率更可減少聚二甲基矽氧烷體積電阻。


    Polydimethylsiloxane (PDMS) is a silicon-based elastomer. In recent years, PDMS has also been used as a casting mold for micro- or nano-contact printing. The mechanical properties of PDMS are so soft and flexible that molds of PDMS affected by gravity produce defects while transforming patterns. To strengthen the mold, it is important to improve the mechanical properties of this material. Many polymers have been added with nanoparticles to improve their properties. Based on the reasons mentioned above, multi-wall carbon nanotubes (MWNT) were mixed with PDMS in this research.
    The aim of this thesis focus on investigating the influence of MWNT on the tensile mechanical and viscoelastic properties of MWNT/PDMS membranes, which included initial modulus, stress at break, strain at break, storage modulus and creep rate…etc. Tensile test show that the initial modulus of MWNT/PDMS increases with MWNT content, but both the stress and strain at break decrease. The results of continuous dynamic mechanical analysis indicate that the storage modulus of the resulting specimens was dramatically enhanced, and the storage modulus was significantly improve 55%, when MWNT content is 1wt%. The result from tensile creep test shows the creep of MWNT/PDMS was decreased by comparing to that of pure PDMS on evaluated temperature conditions at different stress levels. Due to MWNT formed a dense MWNT-network contributed greatly to slow down the creep rate.

    目錄 I 表目錄 IV 圖目錄 VII 第一章 前言 1 第二章 研究動機 3 第三章 文獻回顧 5 3.1 彈性體高分子機械與電性質研究 5 3.2 彈性體填充物複合材料機械與電性質研究 6 3.3 聚二甲基矽氧烷與其複合材料應用 13 第四章 實驗內容及程序 17 4.1. 實驗設備 17 4.2. 實驗材料 22 4.3. 試片製作程序 23 4.4 實驗流程 25 4.5. 實驗條件 25 4.6. 實驗方法 26 第五章 結果與討論 34 5.1 多壁奈米碳管/聚二甲基矽氧烷複合材料之拉伸性質 34 5.2 多壁奈米碳管/聚二甲基矽氧烷複合材料介面強度與補強機制 37 5.2-1 多壁奈米碳管/聚二甲基矽氧烷複合材料介面強度之形成 37 5.2-2 多壁奈米碳管/聚二甲基矽氧烷複合材料補強機制 38 5.2-3 以穆林比率探討多壁奈米碳管與聚二甲基矽氧烷間介面強 度 41 5.3 多壁奈米碳管/聚二甲基矽氧烷複合材料破壞斷面與表面形貌 43 5.3-1 多壁奈米碳管/聚二甲基矽氧烷複合材料破壞斷面 43 5.3-2 多壁奈米碳管/聚二甲基矽氧烷複合材料表面形貌 44 5.4 多壁奈米碳管/聚二甲基矽氧烷複合材料之連續動態機械測試 44 5.5 經溫度循環之多壁奈米碳管/聚二甲基矽氧烷複合材料機械性 質 45 5.5-1 經溫度循環多壁奈米碳管/聚二甲基矽氧烷複合材料拉伸 性質 45 5.5-2 經溫度循環之多壁奈米碳管與聚二甲基矽氧烷介面強度 47 5.5-3 經溫度循環多壁奈米碳管/聚二甲基矽氧烷連續動態機械 測試 48 5.5-4 經溫度循環多壁奈米碳管/聚二甲基矽氧烷破壞斷面 48 5.6 多壁奈米碳管/聚二甲基矽氧烷複合材料潛變性質 49 5.6-1 常溫多壁奈米碳管/聚二甲基矽氧烷複合材料潛變性質 50 5.6-2 高溫環境多壁奈米碳管/聚二甲基矽氧烷複合材料潛變性 質 53 5.7 多壁奈米碳管/聚二甲基矽氧烷複合材料物理性質 55 5.7-1 多壁奈米碳管/聚二甲基矽氧烷複合材料熱導性質 55 5.7-2 多壁奈米碳管/聚二甲基矽氧烷複合材料之比重 56 5.7-3 多壁奈米碳管/聚二甲基矽氧烷複合材料之體積電阻 56 第六章 結論 58 參考文獻 61 附表 67 附圖 80 表目錄 表3-1 各硬化劑比例PDMS楊氏模數值[1] 67 表3-2 酸洗與APS表面改質,MWNT/PDMS複合材料機械性質[3] 67 表4-1 ASTM D412試片尺寸規定 [49] 67 表5-1 Pure PDMS真實應力、應變值 68 表5-2 0.25wt% MWNT/PDMS真實應力、應變值 68 表5-3 0.5wt% MWNT/PDMS真實應力、應變值 68 表5-4 0.75wt% MWNT/PDMS真實應力、應變值 69 表5-5 1wt% MWNT/PDMS真實應力、應變值 69 表5-6 各MWNT含量彈性模數值 69 表5-7 Pure PDMS穆林比率(Rmullin) 70 表5-8 1wt%MWNT/PDMS穆林比率(Rmullin) 70 表5-9 Pure PDMS儲存模數(G) 70 表5-10 1wt%MWNT/PDMS儲存模數(G) 70 表5-11 Pure PDMS,經50次溫度循環之真實應力、應變值 71 表5-12 Pure PDMS,經500次溫度循環之真實應力、應變值 71 表5-13 1wt%MWNT/PDMS,經50次溫度循環之真實應力、應變值 71 表5-14 1wt%MWNT/PDMS,經500次溫度循環之真實應力、應變 72 表5-15 Pure PDMS,經50次溫度循環穆林比率值(Rmullin) 72 表5-16 Pure PDMS,經500次溫度循環穆林比率值(Rmullin) 72 表5-17 1wt%MWNT/PDMS,經50次溫度循環之穆林比率(Rmullin) 72 表5-18 1wt%MWNT/PDMS,經500次溫度循環穆林比率值(Rmullin).73 表5-19 Pure PDMS,經500次溫度循環儲存模數(G’) 73 表5-20 1wt%MWNT/PDMS,經500次溫度循環儲存模數(G’) 73 表5-21 Pure PDMS室溫2MPa,嵌合潛變曲線参數值 73 表5-22 Pure PDMS室溫3MPa,嵌合潛變曲線参數值 74 表5-23 Pure PDMS室溫4MPa,嵌合潛變曲線参數值 74 表5-24 1wt%MWNT/PDMS室溫2MPa,嵌合潛變曲線参數值 74 表5-251wt%MWNT/PDMS室溫3MPa,嵌合潛變曲線参數值 74 表5-26 1wt%MWNT/PDMS室溫4MPa,嵌合潛變曲線参數值 75 表5-27 Pure PDMS室溫2MPa,潛變應變率 75 表5-28 1wt%MWNT/PDMS室溫2MPa,潛變應變率 75 表5-29 Pure PDMS室溫3MPa,潛變應變率 75 表5-30 1wt%MWNT/PDMS室溫3MPa,潛變應變率 76 表5-31 Pure PDMS室溫4MPa,潛變應變率 76 表5-32 1wt%MWNT/PDMS室溫4MPa,潛變應變率 76 表5-33 Pure PDMS應力3MPa溫度50℃嵌合潛變曲線参數 76 表5-34 Pure PDMS應力3MPa溫度75℃嵌合潛變曲線参數 77 表5-35 Pure PDMS應力3MPa溫度100℃嵌合潛變曲線参數 77 表5-36 1wt%MWNT/PDMS應力3MPa溫度50℃嵌合潛變曲線参數 77 表5-37 1wt%MWNT/PDMS應力3MPa溫度75℃嵌合潛變曲線参數 77 表5-38 1wt%MWNT/PDMS應力3MPa溫度100℃嵌合潛變曲線参數 78 表5-39 Pure PDMS應力3MPa溫度50℃,潛變應變率 78 表5-40 1wt%MWNT/PDMS應力3MPa溫度50℃,潛變應變率 78 表5-41 Pure PDMS應力3MPa溫度75℃,潛變應變率 78 表5-42 1wt%MWNT/PDMS應力3MPa溫度75℃,潛變應變率 79 表5-43 Pure PDMS應力3MPa溫度100℃,潛變應變率 79 表5-44 1wt%MWNT/PDMS應力3MPa溫度100℃,潛變應變率 79 圖目錄 圖3-1 PDMS楊氏模數與硬化劑比例關係[1]………………………...80 圖3-2 PDMS附著能(縱軸)與分子量關係[6] …………………………80 圖3-3 PDMS楊氏模數(縱軸)與分子量及應變率關係(橫軸) [6] …....80 圖3-4 PDMS分子量與應力鬆弛曲線關係[6] ………………………..80 圖3-5 MWNT/natural rubber應力-應變曲線[14] ……………………..80 圖3-6 SWNT/RTV應力應變曲線[15] ………………………...............80 圖3-7 應變80%處,Pure RTV 與SWNT/RTV,切線模數比[15]…81 圖3-8 添加0.3wt%SWNT/RTV切線模數補強率[15] ……………...81 圖3-9 MWNT /SBR拉曼光譜分析[16] ……………………………....81 圖3-10 SWNT/RTV拉曼光譜波長與應變之關係[15] ……………....81 圖3-11 silica/PDMS加載-卸載-加載拉伸應力-應變曲線[19] ……….81 圖3-12 各劑量電子輻射照射後之silica/PDMS穆林比率[19]……...82 圖3-13 MWNT /SBR複合材料之Payne effect [5] …………………..82 圖3-14 與應變有關之體積電阻量測方式[5] ………………………...82 圖3-15 MWNT /SBR於各應變的體積電阻[5] ……………………….82 圖3-16 (a)酸洗前(b) 酸洗後SWNT[29] …………………………......82 圖3-17 酸洗前後SWNT拉曼光譜[29] ……………………………...82 圖3-18 MWNT/PDMS室溫中儲存模數[30] …..……………………..83 圖3-19 微流道系統中連接器(上方)開孔示意圖[35]………………...83 圖3-20 微流道與連接器製作示意圖[1] ……………………………...83 圖3-21 主劑與硬化劑比例5:1 PDMS與各表面之附著能[1] …….83 圖3-22 主劑與硬化劑比例10:1 PDMS與各表面之附著能[1]……83 圖3-23 主劑與硬化劑比例15:1 PDMS與各表面之附著能[1] ……83 圖 3-24 以PDMS製作具堆疊型態之微流道系統[36]……..………..84 圖3-25 流道幫浦與幫浦膜片製作示意圖[4] ………………………...84 圖3-26 磁感式流道幫浦[4] …………...………………………………84 圖3-27 磁感式流道幫浦作動圖[4] …………………………………...84 圖3-28 SWNT/PDMS薄膜所製作的NH3氣體感知器示意圖[40] …..84 圖3-29 NH3氣體通入後,感知器感測訊號[40]………………………85 圖3-30 三種元件製作原理示意圖[41] …………………………….....85 圖3-31 以MWNT/PDMS,所製作的彈性體應變規[41] ………….…85 圖3-32 以MWNT/PDMS,所製作的電容式壓力感知器[41] …86 圖3-33 以MWNT/PDMS,所製作的流體感知器與加熱器[41] 86 圖4-1 Instron 8848微拉伸試驗機 87 圖4-2 拉伸夾置具 87 圖4-3 溫度與溼度控制箱 87 圖4-4 模具 87 圖4-5 加熱器 88 圖4-6 熱壓機 88 圖4-7 電子天秤與比重計 88 圖4-8 磁力攪拌器 88 圖4-9 真空烘箱與真空幫浦 88 圖4-10 超音波震盪器 88 圖4-11 高扭力攪拌機 88 圖4-12 試片切割刀 89 圖4-13 高阻計 89 圖4-14 溫度循環機 89 圖4-15 場發射掃描式電子顯微鏡 ..89 圖4-16 Nano UTM動態拉力機 89 圖4-17 熱傳導係數分析儀 89 圖4-18 MWNT/PDMS薄膜(a)製作流程圖(b)製作示意圖 90 圖4-19 實驗流程圖 .91 圖4-20 ASTM D412規定模具[42] .91 圖4-21 ASTM D882試片尺寸規定 .91 圖4-22 依ASTM D882所量測工程應力-應變曲線 .92 圖4-23 本文所設計拉伸試片尺寸 .92 圖4-24 實際使用(a)拉伸試片(b)已破斷拉伸試片(c)CDMA試片與 (d)熱傳導係數試片 .93 圖4-25 使用高速攝影機與LVDT量測試片位移(a)實驗方式(b)Pure PDMS與(c)1wt%MWNT/PDMS實際測試情形 .93 圖4-26 Pure PDMS使用高速攝影機(縱軸εC)與LVDT(橫軸εL)量測 試片應變差異分析 94 圖4-27 1wt%MWNT/PDMS使用高速攝影機(縱軸εC)與LVDT(橫軸 εL)量測試片應變差異分析 94 圖4-28 CDMA(a)試片尺寸、(b)待測試片準備與(c)實驗方法 95 圖4-29 溫度循環測試範圍 95 圖4-30加載-卸載拉伸測試使用位移 96 圖4-31 穆林比率定義 96 圖4-32 潛變曲線數值模型Findley power law 96 圖5-1 Pure PDMS工程應力-應變曲線區段定義 97 圖5-2 (a)Pure PDMS、(b)添加0.25wt%與(c)添加0.5wt MWNT/PDMS 真實應力-應變曲線 97 圖5-3 (a)添加0.75wt%、(b)添加1wt% MWNT/PDMS真實應力-應變 曲線(c)各MWNT含量真實應力-應變曲線比較圖 98 圖5-4 各MWNT含量初始模數比較圖 98 圖5-5 各MWNT含量於20%應變之應力比較圖 99 圖5-6 各MWNT含量於40%應變之應力比較圖 99 圖5-7 各MWNT含量於60%應變之應力比較圖 100 圖5-8 各MWNT含量破壞應力比較圖 100 圖5-9 各MWNT含量破壞應變比較圖 101 圖5-10 (a)Pure PDMS、(b)添加0.25wt%與( c) 添加1wt% MWNT/PDMS切線模數 101 圖5-11 添加0.25wt%與1wt%切線模數補強率比較圖 102 圖5-12 各MWNT含量彈性模數比較圖 102 圖5-13 MWNT於PDMS內(a)第一段、 (b)第二段補強機制與(c)破壞 機制………………………………………………………......103 圖5-14 Pure PDMS加載-卸載測試真實應力-應變曲線 103 圖5-15 1wt%MWNT/PDMS 加載-卸載測試真實應力-應變曲線 104 圖5-16 Pure PDMS穆林比率 104 圖5-17 1wt%MWNT/PDMS穆林比率 105 圖5-18 Pure PDMS破壞斷面 105 圖5-19 添加0.25wt%MWNT/PDMS破壞斷面 106 圖5-20 添加0.5wt%MWNT/PDMS破壞斷面脫離現象 106 圖5-21 添加0.5wt%MWNT/PDMS破壞斷面脫離現象 107 圖5-22 添加0.5wt%MWNT/PDMS破壞斷面脫離現象 107 圖5-23 添加0.5wt%MWNT/PDMS破壞斷面 108 圖5-24 添加1wt%MWNT/PDMS破壞斷面 108 圖5-25 添加1wt%MWNT/PDMS破壞斷面脫離現象 109 圖5-26 未拉伸Pure PDMS表面形貌 109 圖5-27 未拉伸0.5wt%MWNT/PDMS表面形貌 110 圖5-28 未拉伸1wt%MWNT/PDMS表面形貌 110 圖5-29 應變60%時,Pure PDMS表面形貌 111 圖5-30 應變60%時,0.5wt%MWNT/PDMS表面形貌 111 圖5-31 應變60%時,1wt%MWNT/PDMS表面形貌 112 圖5-32 Pure PDMS與1wt%MWNT/PDMS儲存模數 112 圖5-33 經50次與500次溫度循環後,Pure PDMS與1wt% MWNT/PDMS破壞應力比較 113 圖5-34 經50次與500次溫度循環後,Pure PDMS與1wt% MWNT/PDMS破壞應變比較 113 圖5-35 經50次與500次溫度循環後,Pure PDMS與1wt% MWNT/PDMS初始模數比較 114 圖5-36 經溫度循環後,Pure PDMS與1wt%MWNT/PDMS於應變 18%穆林比率比較 114 圖5-37 經溫度循環後,Pure PDMS與1wt%MWNT/PDMS於應變 34%穆林比率比較 115 圖5-38 經溫度循環後,Pure PDMS與1wt%MWNT/PDMS於應變 47%穆林比率比較 115 圖5-39 經溫度循環後,Pure PDMS與1wt%MWNT/PDMS於應變 55%穆林比率比較 116 圖5-40 經500次溫度循環後,Pure PDMS與1wt%MWNT/PDMS 儲存模數 116 圖5-41 (a)未經、(b)經50次與(c)經500次溫度循環後Pure PDMS破 壞斷面 117 圖5-42 (a)未經、(b)經50次與(c)經500次溫度循環後1wt% MWNT/PDMS破壞斷面 117 圖5-43 未經溫度循環,1wt%MWNT/PDMS破壞斷面脫離現象.. 118 圖5-44經50次溫度循環,1wt%MWNT/PDMS破壞斷面脫離現象.118 圖5-45經500次溫度循環,1wt%MWNT/PDMS破壞斷面脫離現象 119 圖5-46 室溫應力等級2MPa(a)Pure PDMS與(b)1wt%MWNT/PDMS 潛變曲線嵌合數值模型Findley power law .120 圖5-47 室溫應力等級3MPa(a)Pure PDMS與(b)1wt%MWNT/PDMS 潛變曲線嵌合數值模型Findley power law 121 圖5-48 室溫應力等級4MPa(a)Pure PDMS與(b)1wt%MWNT/PDMS 潛變曲線嵌合數值模型Findley power law 122 圖5-49 室溫應力等級2MPa、3MPa與4 MPa, Pure PDMS與 1wt%MWNT/PDMS 潛變曲線比較圖 123 圖5-50 室溫應力等級2MPa、3MPa與4 MPa, Pure PDMS與 1wt%MWNT/PDMS 嵌合曲線参數值εF比較圖 123 圖5-51 室溫應力等級2MPa、3MPa與4 MPa, Pure PDMS與 1wt%MWNT/PDMS 嵌合曲線参數值n比較圖 124 圖5-52 室溫應力等級2 MPa、3MPa與4 MPa, Pure PDMS與 1wt % MWNT/PDMS 潛變過程應變量Δε比較圖 124 圖5-53 室溫應力等級2 MPa,Pure PDMS與1wt%MWNT/PDMS 潛 變過程應變率比較圖 125 圖5-54 室溫應力等級3 MPa,Pure PDMS與1wt%MWNT/PDMS潛 變過程應變率比較圖 125 圖5-55 室溫應力等級4 MPa,Pure PDMS與1wt%MWNT/PDMS潛 變過程應變率比較圖………………………………………..126 圖5-56 以Pure PDMS潛變曲線,預測1wt%MWNT/PDMS於應力等 級(a) 2MPa (b)3MPa (c)4MPa潛變曲線 126 圖5-57環境溫度50℃,應力等級3MPa(a)Pure PDMS與(b)1wt% MWNT/PDMS 潛變曲線嵌合數值模型Findley power law ………………………………………………………………..127 圖5-58 環境溫度75℃,應力等級3MPa(a)Pure PDMS與(b)1wt% MWNT/PDMS 潛變曲線嵌合數值模型Findley power law …128 圖5-59 環境溫度100℃,應力等級3MPa (a)Pure PDMS與(b)1wt% MWNT/PDMS 潛變曲線嵌合數值模型Findley power law .129 圖5-60環境溫度25℃、50℃、75℃與100℃,應力等級3MPa Pure PDMS與1wt%MWNT/PDMS 潛變曲線比較圖 130 圖5-61環境溫度25℃、50℃、75℃與100℃,應力等級3MPa Pure PDMS與1wt%MWNT/PDMS 嵌合曲線参數值εF比較 圖 130 圖5-62環境溫度25℃、50℃、75℃與100℃,應力等級3MPa Pure PDMS與1wt%MWNT/PDMS 嵌合曲線参數值n比較圖 131 圖5-63環境溫度25℃、50℃、75℃與100℃,應力等級3MPa Pure PDMS與1wt%MWNT/PDMS 潛變過程應變量Δε比 較圖 131 圖5-64環境溫度50℃,應力等級3MPa Pure PDMS與1wt% MWNT/PDMS潛變過程應變率比較圖…………………….132 圖5-65環境溫度75℃,應力等級3MPa Pure PDMS與1wt% MWNT/PDMS潛變過程應變率比較圖…………………….132 圖5-66環境溫度100℃,應力等級3MPa Pure PDMS與1wt% MWNT/PDMS潛變過程應變率比較圖…………………….133 圖5-67 MWNT於PDMS內所形成網路連結 133 圖6-68各MWNT含量熱傳導係數比較圖 134 圖6-69各MWNT含量熱擴散係數比較圖 134 圖6-70各MWNT含量之比重變化量 135 圖6-71各MWNT含量體積電阻比較圖 135

    参考文獻

    1. D. Armani and C. Liu, “Re-configurable Fluid Circuits By PDMS Elastomer Micromachining,” 12th International Conference on MEMS, MEMS 99, pp.222-227, Orland, FL, 1998.
    2. Sylgard 184 Silicone elastomer product informatiom.
    3. G.X. Chen, H.S. Kim, B.H. Park and J.S. Yoon, “Highly insulating silicone composite with a high carbon nanotube,” Carbon, pp.3348-3378, 2006.
    4. J.J. Nagel, G. Mikhail, H. Noh and J. Koo, “Magnetically Actuated Micropumps Using an Fe-PDMS Composite Membrane,” www.library.drexel.edu.
    5. L. Bokobza, “Multiwall carbon nanotube elastomeric composites: A review,” polymer, article in press, 2007.
    6. A. Galliano, S. Bistac and J. Schultz, “Adhesion and friction of PDMS networks:molecular weight effects,” Journal of Colloid and Interface Science, Vol 265, pp.372-379, 2003.
    7. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp.56-58, 1991.
    8. J.P. Salvetat, GAD Briggs, J.M. Bonard, R.R. Bacsa, A. Kulik and T. Stockli, “Elastic and Shear Moduli of Single-Walled Carbon Nanotube
    Ropes,” Physical Review Letters, Vol 82, pp.944-947, 1999.
    9. P. Poncharal, Z.L. Wang, D. Ugarte and D. Heer, “Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes ,” Science, Vol 283, pp.1513-1516, 1999.
    10. A. Allaoui, S. Bai , H.M. Cheng and J.B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology, Vol 62, pp.1993-1998, 2002.
    11. M.K. Yeh, N.H. Tai and J.H. Liu, “Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes,” Carbon, Vol 44, pp.1-9, 2006.
    12. D. Qian, E.C. Dickey, R. Andrew and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, Vol 76, pp.2868-2870, 2000.
    13. M.A. Lopez-Manchado, J. Biagiotti, L. Valentini and J.M. Kenny, ” Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber,” Journal of Applied Polymer Science, Vol 92, pp.3394-3400, 2004.
    14. A. Fakhru’l-Razi, M.A. Atieh, N. Girun, T.G. Chuah, M. El-Sadig and D.R.A Biak, “Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber,” Composite Structures, Vol 75, pp.496-500, 2006.
    15. M.D. Frogley, D. Ravich and H.D. Wagner, “Mechanical properties of carbon nanoparticle-reinforced elastomers,” Composites Science and Technology, Vol 63, pp.1647-1654, 2003.
    16. C.A. Cooper, R.J. Young and M. Halsall, “Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy ,” Composites: Part A, Vol 32, pp.401-411, 2001.
    17. F. Yatsuyanagi, N. Suzuki, M. Ito and H. Kaidou, “Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems,” Polymer, Vol 42, pp.9523-9529, 2001.
    18. L. Mullins, “Effect of stretching on the properties of rubber,” J Rubber Res. Inst. Malaya, Vol 16, pp275, 1947.
    19. I. Stevenson, L. David, C. Gauthier, L. Arambourg, J. Davenas, G. Vigier, “Influence of SiO2 fillers on the irradiation ageing of silicone rubbers,” polymer, Vol. 42, pp9287-9292, 2001.
    20. E. Guth, “Theory of filler reinforcement,” Journal of Applied Physics, Vol 16, pp.20, 1944.
    21. J.C. Halpin,” Stiffness and Expansion Estimates for Oriented Short Fiber Composites.” Journal of Composite Materials, Vol 3, pp.732-734, 1969.
    22. J.Q. Pham, C.A. Mitchell, J.L. Bahr, J.M. Tour, R. Krishanamoorti and P.F. Green, “Glass transition of polymer/single-walled carbon nanotube composite films,” Journal of Polymer Science, Part B: Polymer Physics, Vol 41, pp.3339-3345, 2003.
    23. H. Xie, B. Liu, Z. Yuan, J. Shen and R. Cheng, “Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry,” Journal of Polymer Science, Part B: Polymer Physics, Vol 42, pp.3701-3712, 2004.
    24. F.H. Gojny, M.H.G. Wichmann, U. Koke, B. Fiedler and K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content ,” Composites Science and Technology, Vol 64, pp.2363-2371, 2004.
    25. J. Kwon and H. Kim, “Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization,” Journal of Polymer Science, Part A: Polymer Chemistry, Vol 43, pp.3973-3985, 2005.
    26. F. Gojny and K. Schulte, “Functionalisation effect on the thermo- mechanical behaviour of multi-wall carbon nanotube/ epoxy- composites,” Composites Science and Technology, Vol 64, pp.2303-2308, 2004.
    27. T. Ramanathan, H. Liu and L.C. Brinson, “Functionalized SWNT/polymer nanocomposites for dramatic property improvement,” Journal of Polymer Science, Part B: Polymer Physics, Vol 43, pp.2269-2279, 2005.
    28. X. Gong, J. Liu, S. Baskaran, R.D. Voise and J.S. Young, “Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites,” Chemistry of Materials, Vol 12, pp.1049-1052, 2000.
    29. R. Guzman, A. Miravete, J. Cuartero, A Chiminelli and N. Tolosana, “Mechanical properties of SWNT/epoxy composites using two different curing cycles,” Composites Part B: engineering, Vol 37, pp.273-277, 2006.
    30. J. Paul, S. Sindhu, M.H. Numawati and S. Valiyaveettil, “Mechanics of prestressed polydimethylsiloxane-cabon nantube composite,” Applied physics letters, Vol 89, Issue 18, pp.4101, 2006.
    31. M.A. Unger and H.P. Chou, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol 288, pp.113-116, 2006.
    32. J.S. Go and S. Shoji, “A disposable, dead volume-free and leak-free in-plane PDMS microvalve,” Sensor and Actuators, pp.438-444, 2004.
    33. M. Agarwall, R.A. Gunasekaran and P. Coane, “Polymer-based variable focal length microlens system,” Journal of Micromechanics and Microengineering, Vol 14, pp.1665-1673, 2004.
    34. S. Camou, H. Fujita and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab on a Chip, Vol 3, pp.40-45, 2003.
    35. S. Li and S. Chen, “Polydimethylsioxane fluidic interconnects for Microfluidic Systems,” IEEE Transaction on Advanced Packaging, Vol 26, pp.242-247, 2003.
    36. B.H. Jo, M. Linda and V. Lerberghe, “Three-dimensional micro-channel fabrication in polydimethylsioxane (PDMS) elastomer,” Microelectromechanical Systems, Vol 9, pp.76-81, 2000.
    37. P.krulevitch, W. Bennett and J. Hamilton, “Polymer-based packaging platform for hybrid microfluidic systems,” Biomedical Microdevices, Vol 4, pp.301-308, 2002.
    38. S. Rimdusit and H. Ishida, “Gelation study of high processability and high reliability ternary systems based on benzoxazine, epoxy, and phenolic resins for an application as electronic packaging materials,” Rheologica Acta., Vol 41, pp.1-9, 2002.
    39. 李俊賢, “可攜式無閥壓電為幫浦之設計製作與應用,” 碩士論文, 國立台灣大學應用力學研究所,2000.
    40. C.S. Woo., C.H. Lim, C.W. Cho., B. Park, H. Ju, D.H. Min, C.J. Lee, and S. B. Lee, “Fabrication of flexible and transparent single-wall carbon nanotube gas sensors by vacuum filtration and poly(dimethyl siloxane) mold transfer,” Microelectronic engineering, Vol 84, pp.1610-1613, 2007.
    41. J.M. Engel, N. Chen, R. Kee, S. Pandya, C. Tucker, Y. Yang, and C. Liu, “Multi-Layer Embedment of Conductive and Non-Conductive PDMS for All-Elastomer MEMS,” The 12th Solid State Sensors, Actuator, and Microsystems Workshop (Hilton Head 2006), Hilton Head Island, SC, June 4 - 8, 2006.
    42. ASTM D412, “Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension,” 2002.
    43. J.S. Lai and W.N. Findley, “Elevated temperature creep of polyurethane under nonlinear torsional stress with step changes in torque,” Transactions of society of Rheology, Vol 17, Issue 1, pp. 129-150, 1973.
    44. A.Viidik , “Functional properties of collagenous tissues,”. Int Rev
    Connect Tissue , Vol 6, pp. 218-252, 1973.
    45. V. M. Litvinov, H. Barthel and J. Weis, “Structure of a PDMS layer grafted onto a silica surface studied by means of DSC and solid-state NMR,” Macromolecles, Vol 35, pp. 4356-4364, 2002.
    46. H. Yang, Q.T. Nguyen, Y. Ding, Y. Long and Z. Ping, “Investigation of poly(dimethyl siloxane) (PDMS)-solvant interactions by DSC,” Journal of membrane science, Vol 164, pp.73-43, 2000.
    47. L. Emer, R. Leahy, J.N. Coleman and W.J. Blau, “Physical properties of novel free-standing polymer-nanotube thin films,” Carbon, Vol 44, pp. 1525-1529, 2006.
    48. R.T. Johnson, J.R.M. Bieffeld and J.A. Sayer, “High-temperature and Thermal decomposition of Sylgard 184 and mixtures containing hollow microspherical fillers,” Polymer engineering and Science, Vol 24, pp. 435-441, 1984.
    49. 胡德, “高分子物理與機械性質(下),” 渤海堂文化公司, pp. 353,1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE