研究生: |
周振輝 Chou, Zhen-Hui |
---|---|
論文名稱: |
檢視作業肌肉骨骼不適與視覺疲勞評估研究 Assessment of Musculoskeletal Disorders and Visual Fatigue on Visual Inspection Task |
指導教授: |
王明揚
Wang, Min-Yang |
口試委員: |
盧俊銘
Lu, Jun-Ming 劉立文 Liu, Li-Wen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系碩士在職專班 Industrial Engineering and Engineering Management |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 檢視作業 、肌肉骨骼不適 、視覺疲勞 、較長時間工作 |
外文關鍵詞: | Visual inspection, Musculoskeletal disorders, Visual fatigue, Longer working hours |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隱形眼鏡製造的過程需要進行許多步驟,當中檢視作業是運用人力最多的程序,在未出現有效取代的方式前,仍必須以人員眼睛進行檢查工作。隱形眼鏡檢視工作屬於輕負荷高重複的作業,長期從事又沒有適度休息,可能對從事此工作的人員產生視覺與肌肉骨骼方面的影響,本研究將以(1)肌肉骨骼不適(引用Nordic. Musculoskeletal Questionnaire,簡稱NMQ)與(2)視覺疲勞主觀評量表所收集的資訊作為基礎,評估檢視作業影響身體肌肉骨骼部位不適與視覺疲勞反應程度狀況。
在肌肉骨骼不適的評估將利用關鍵指標手工物料作業檢核表(Key Indicators Methods for Manual Huandling Operation, KIM-MHO)對檢視人員作業負荷進行評量,視覺疲勞使用視覺頻閃儀(Ficker)量測作業場所內人員閃光融合閾值(Fatigue Critical Fusion Frequency,簡稱CFF)數據,來評估視覺疲勞現況。從185位檢視作業人員身體肌肉骨骼問卷及5名職安人員運用KIM-MHO檢核表評估的研究結果發現,工作時間較長會導致肌肉骨骼不適累積,影響最主要部位在身體上肢,造成的原因為手部重復性動作與不正直的坐姿。從185位檢視作業人員視覺疲勞主觀問卷及檢視作業場所中60名人員進行閃光融合閾值(CFF)量測,結果中發現檢視作業對人員的視覺疲勞反應都有正相關影響,疲勞產生原因主要為每日工作時間較長,另在性別差異比較中發現,女性無論在肌肉骨骼不適或視覺疲勞都比男性明顯。
較長的工作時間是檢視作業產生肌肉骨骼不適與視覺疲勞要主要的因素,若能對每日作業內容進行適當的調配,減少重複性動作及眼睛凝視的時間,將降低對肌肉骨骼不適與視覺疲勞不良影響。工作改善建議調整工作姿勢,讓身體上身能保持正直,配合人因工程設計原理與檢視人員身體尺寸,設置坐椅與工作桌面高度避免產生低頭與彎腰,設計適合輔助工具減少手部的握持與移動,搭配手腕防護器具消除檢視作業引起的肌肉骨骼不適與視覺疲勞的現象。
Contact lens manufacturing process requires many steps, of which the visual inspection on the lens is the most labor-intensive procedure. And this inspection by labors’ eyes is not replaceable before any effective method was found. Contact lens examining is a light-weight and repetitive task. In the long-term engagement without any proper rest might cause visual and musculoskeletal effects. This study will be informed from the subjective assessment of (1) muscular-skeletal disorders (Nordic. Musculoskeletal Questionnaire, NMQ) and (2) visual fatigue to as a basis for evaluate discomfort and visual fatigue in the musculoskeletal area of the visual inspection task.
In one of the assessment methods of Musculoskeletal Disorders, KIM-MHO will be used to engage in the Visual Inspection Task. The Visual Fatigue Critical Fusion Frequency (CFF) data were measured at the working station using flicker fusion frequency (Handy Ficker: HF, Japan) and the data were statistically analyzed and assessment. It is found that on the body musculoskeletal survey of 185 operators and KIM-MHO checklist of 5 staff members’ assessment, the longer working hours accumulate musculoskeletal disorders. The most effective impacts on the body are the repeatable action of hands and upper extremities with abnormal sitting position. It is found that the results on the visual fatigue subjective assessment survey of 185 operators and CFF of 60 visual inspection work area operators have a positive correlation, which was caused by the long working hours in everyday. In the gender differences on the comparison found, women’s musculoskeletal disorders and visual fatigue than man had more obvious effects.
The more working hours are the main factors in musculoskeletal disorders and visual fatigue in visual task. If the working time is adjustable to reduce the repeatable action and eyes gaze time on daily work which could less the effect on musculoskeletal disorders and visual fatigue. The work environment improving like the working posture adjusted which work men sitting straight goes with human engineering design. Redesign suitable chairs and desktops in according the height of staffs and operators to avoid body bow and bow down. Design the hand tool for assisting to reduce hand grip and movement and with the wrist protection equipment, reduce the degree of wrist load.
1. 王天津, & 候東旭. (1996). 中文字型與字體大小對閱讀與搜尋作業績效影響之研究. 刊名: 高雄工學院學報.
2. 申新仟. (2012). 不同色溫螢光燈用於辦公室照明之視覺效應研究(Doctoral dissertation, National Central University).
3. 石東生. (2007). 人因工程工作姿勢圖例. 行政院勞工委員會勞工安全衛生研究所.
4. 朱祖祥, & 曹立人. (1994). 目標-背景色的配合對彩色 CRT 顯示工效的影響. 心理學報, 26(2), 128-135.
5. 吳水丕, & 林岳勳. (2010). 放大鏡倍率, 鏡面傾斜角度與作業面高度對於女性人員偵檢績效, 視覺與肌肉疲勞之效應. 技術學刊 (Journal of Technology), 25.4: 285-292.
6. 李再長, 李永輝, 黃雪玲, & 王明揚. (2010). 人因工程 (二版). 台北市: 華泰文化事業有限公司.
7. 李開偉. (2017). 實用人因工程學 (5版). 台北市: 全華科技圖書股份有限公司.
8. 李睿琦. (2010). 冷陰極管輝度與色度對使用者視覺疲勞與視覺績效之影響. 清華大學工業工程與工程管理學系工程碩士在職專班學位論文, 1-70.
9. 李德松. (2006). 電子紙顯示器使用者的視距, 螢幕角度, 視覺績效與疲勞. PhD Thesis.
10. 林川. (1994). 漢文的書寫-閱讀排列方式分析. 中華印刷科技年報, 頁, 430-435.
11. 林清泉, 黃文進, & 洪儀芳. (2002). 文字色彩與亮度對比對液晶顯示螢幕識認績效與主觀偏好的影響.
12. 林清泉. (2001). 螢幕種類, 環境照明, 與文字/背景色彩組合對終端機視覺作業影響之研究. PhD Thesis.
13. 林景鴻. (2011). 應用眼球追蹤系統探討不同照明方式下 VDT 作業對工作效率影響之研究. 成功大學建築學系學位論文, 1-84.
14. 邱盈勳. (2002). 醫院護理人員肌肉骨骼不適與體適能及心理社會因素相關探討, 中國醫藥學院環境醫學研究所碩士論文.
15. 邱榆皓. (2013). 平板電腦螢幕色彩組合對視認性及視覺績效, 視覺疲勞之影響. 臺北科技大學創新設計研究所學位論文, 1-80.
16. 柯慶育. (2010). 網頁文字的訊息凸顯方式, 字體大小與欄位對學習者閱讀績效及搜尋績效之影響. 國立臺北教育大學教育傳播與科技研究所學位論文, 1-140.
17. 洪以鈞. (2004). 目檢作業之肩頸部靜態與動態負荷分析. PhD Thesis.
18. 國立臺灣科學教育館. (2015). 科學研習-光與折射率的奧秘. 臺北市.
19. 張文瑜. (2011). 動態存取記憶體目視檢驗工作站之肩頸部負荷與績效分析.
20. 張世錩. (1992). 國小高年級教科書直排之字體大小、字距及行距設計之研究.
21. 張羽均. (2015). 不同環境照度及閱讀極性下最佳手機螢幕亮度之研究. 交通大學工業工程與管理系所學位論文, 1-63.
22. 張智耀, & 謝明燁. (2016). 工作照明與環境照明之組合條件對工作者情緒之影響. 傳承與創新-文化混血的設計創意, 168-183.
23. 張碩文. (2011). 不同環境光照度下平面顯示器之視覺舒適度研究. PhD Thesis.
24. 莊仲仁. (1982). 字距, 行距對中文閱讀的影響.
25. 許勝雄, 彭游, & 吳水丕. (2004). 人因工程第三版, 滄海書局, 臺北.
26. 陳志勇, 劉立文, 潘儀聰, 游志雲, & 陳協慶. (2014).人因工程肌肉骨骼傷病預防研究重要績效輯. 新北市:勞動及職業安全衛生研究所.
27. 陳琇雨. (2001). 螢幕類型、文字/背景色彩組合、中文字型及行距對使用者搜尋及閱讀作業之視覺績效及視覺疲勞的影響.
28. 勞動及職業安全衛生研究所. (2014).人因工程肌肉骨骼傷病預防研究重要績效輯. 新北市.
29. 馮文陽. (2009). 動態環境對人員視覺與生理反應之影響. 中原大學工業與系統工程研究所學位論文, 1-113.
30. 黃至伶. (2008). 發光二極體目檢作業人因危害評估及負荷推估. 高雄醫學大學職業安全衛生研究所學位論文, 1-244.
31. 黃靖旂. (2008). 平面顯示器環境光補償系統之研究. PhD Thesis.
32. 葉力綺. (2007). 探討適合高齡者閱讀之 TFT-LCD 極性及搜尋作業視覺績效研究. PhD Thesis. 碩士 (Master).
33. 廖欣怡. (2004).作業面高度對於上肢重複性作業之生理負荷評估. 朝陽科技大學工業工程與管理系學位論文.
34. 趙致瑜. (2005). 光源, 照度, 字型及極性對電子紙顯示器的視覺績效與視覺疲勞之影響. PhD Thesis.
35. 劉仲瑄. (2016). 3D 顯示器與照明情境對裝配作業績效, 視覺疲勞與生理訊號之影響. 中原大學工業與系統工程研究所學位論文, 1-170.
36. 潘柏豪. (2006). 精密作業下放大鏡視覺偵檢之人因研究.
37. 鄭育菁. (2006). 數位投影機使用者在不同環境下的視覺疲勞與辨識績效評估.
38. 賴沼璋. (2011). TFT-LCD 巨觀檢查對視力影響程度之研究-以 A 廠為例. 中原大學工業與系統工程研究所學位論文, 1-78.
39. 魏朝宏. (1982). 文字造形. 眾文圖書公司.
40. 羅羽辰. (2010). 視距與顯示器型態對視覺績效與疲勞之影響. 朝陽科技大學工業工程與管理系學位論文, 1-66.
41. 經濟部工業局. (2016). 2016年生技產業白皮書. 臺北市.
42. 財政部國稅局. (2014). 103年度眼鏡及光學鏡片業之製造業原物料耗用通常水準調查報告。臺中市:財政部中區國稅局.
43. Ankrum, D. R., & Nemeth, K. J. (1995). Posture, comfort, and monitor placement. Ergonomics in design, 3(2), 7-9.
44. Bergqvist, U., Wolgast, E., Nilsson, B., & Voss, M. (1995). The influence of VDT work on musculoskeletal disorders. Ergonomics, 38(4), 754-762.
45. Bridger, R. (2008). Introduction to ergonomics. Crc Press.
46. Bullimore, M. A., Howarth, P. A., & Fulton, J. (1990). Assessment of visual performance. Evaluation of human work: a practical ergonomics methodology, 804-839.
47. Chi, C. F., & Lin, F. T. (1998). A comparison of seven visual fatigue assessment techniques in three data-acquisition VDT tasks. Human Factors, 40(4), 577-590.
48. Corlett, E. N., & Bishop, R. P. (1976). A technique for assessing postural discomfort. Ergonomics, 19(2), 175-182.
49. Emanuel, J. T., & Glonek, R. J. (1976). Ergonomic approach to productivity improvement for microscope work. In Proceedings, AIIE Systems Engineering Conference Institute for Industrial Engineering.
50. Freivalds, A., & Niebel, B. (2013). Niebel's Methods, Standards, & Work Design. Mcgraw-Hill higher education.
51. Gujar, A. U., Harrison, B. L., & Fishkin, K. P. (1998, October). A comparative evaluation of display technologies for reading. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 42, No. 6, pp. 527-531). Sage CA: Los Angeles, CA: SAGE Publications.
52. Haines, H., & McAtamney, L. (1993). Applying ergonomics to improve microscopy work. Microscopy and analysis, (36), 15-17.
53. Helander, M. G., & Rupp, B. A. (1984). An overview of standards and guidelines for visual display terminals. Applied ergonomics, 15(3), 185-195.
54. Hennings, L. K., & Ye, N. (1996). Interaction of screen distances, screen letter heights and source document distances. interacting with Computers, 8(4), 311-322.
55. Heuer, H., Hollendiek, G., Kröger, H., & Römer, T. (1989). Rest position of the eyes and its effect on viewing distance and visual fatigue in computer display work. Zeitschrift fur experimentelle und angewandte Psychologie, 36(4), 538-566.
56. Horie, Y. (1991). A study on the evaluation of sample workload by a thermal video system. Towards Human Work: Solutions to Problems in Occupational Health and Safety, 251-252.
57. Hwang, S. L., Wang, M. Y., & Her, C. C. (1988). An experimental study of Chinese information displays on VDTs. Human Factors, 30(4), 461-471.
58. Iwasaki, T., & Akiya, S. (1991). The significance of changes in CFF values during performance on a VDT-based visual task. Towards human work: Solutions to problems in occupational health and safety, 352-357.
59. Iwasaki, T., Kurimoto, S., & Noro, K. (1989). The change in colour critical flicker fusion (CFF) values and accommodation times during experimental repetitive tasks with CRT display screens. Ergonomics, 32(3), 293-305.
60. Jorna, G. C., & Snyder, H. L. (1991). Image quality determines differences in reading performance and perceived image quality with CRT and hard-copy displays. Human factors, 33(4), 459-469.
61. Jorna, G. C., & Snyder, H. L. (1991). Image quality determines differences in reading performance and perceived image quality with CRT and hard-copy displays. Human factors, 33(4), 459-469.
62. Kalavar, S. S., & Hunting, K. L. (2015). Musculoskeletal symptoms among cytotechnologists. Laboratory Medicine, 27(11), 765-769.
63. Kingery, D., & Furuta, R. (1997). Skimming electronic newspaper headlines: A study of typeface, point size, screen resolution, and monitor size. Information Processing & Management, 33(5), 685-696.
64. Kofler, M., Kreczy, A., & Gschwendtner, A. (2002). " Occupational backache"–surface electromyography demonstrates the advantage of an ergonomic versus a standard microscope workstation. European journal of applied physiology, 86(6), 492-497.
65. Kroemer, K. H. E., & Granjean, E. (1997). Fitting the Task to the Human, 5e éd.
66. Kruk, R. S., & Muter, P. (1984). Reading of continuous text on video screens. Human Factors, 26(3), 339-345.
67. Lie, I., & Watten, R. G. (1987). Oculomotor factors in the aetiology of occupational cervicobrachial diseases (OCD). European journal of applied physiology and occupational physiology, 56(2), 151-156.
68. LIE, I., & WATTEN, R. G. (1994). VDT work, oculomotor strain, and subjective complaints: an experimental and clinical study. Ergonomics, 37(8), 1419-1433.
69. Lin, C. C. (2003). Effects of contrast ratio and text color on visual performance with TFT-LCD. International Journal of Industrial Ergonomics, 31(2), 65-72.
70. Lin, C. C. (2005). Effects of screen luminance combination and text color on visual performance with TFT-LCD. International Journal of Industrial Ergonomics, 35(3), 229-235.
71. Lin, C. J., Feng, W. Y., Chao, C. J., & Tseng, F. Y. (2008). Effects of VDT workstation lighting conditions on operator visual workload. Industrial health, 46(2), 105-111.
72. Mantiuk, R., Kim, K. J., Rempel, A. G., & Heidrich, W. (2011, August). HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 4, p. 40). ACM.
73. Mantiuk, R., Rempel, A. G., & Heidrich, W. (2009, September). Display considerations for night and low-illumination viewing. In Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization (pp. 53-58). ACM.
74. Mark, S., & Ernest, J. M. (1992). Human factors in engineering and design. NEW YORK: MCG-RAW HILL.[13.
75. Matthews, M. L., Lovasik, J. V., & Mertins, K. (1989). Visual performance and subjective discomfort in prolonged viewing of chromatic displays. Human Factors, 31(3), 259-271.
76. Nishiyama, K. (1990). Ergonomic aspects of the health and safety of VDT work in Japan: a review. Ergonomics, 33(6), 659-685.
77. Rempel, A. G., Heidrich, W., Li, H., & Mantiuk, R. (2009, September). Video viewing preferences for HDR displays under varying ambient illumination. In Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization (pp. 45-52). ACM.
78. Saito, S., Taptagaporn, S., & Salvendy, G. (1993). Visual comfort in using different VDT screens. International Journal of Human‐Computer Interaction, 5(4), 313-323.
79. Shieh, K. K. (2000). Effects of reflection and polarity on LCD viewing distance. International Journal of Industrial Ergonomics, 25(3), 275-282.
80. Shieh, K. K., Chen, M. T., & Chuang, J. H. (1997). Effects of color combination and typography on identification of characters briefly presented on VDTs. International Journal of Human-Computer Interaction, 9(2), 169-181.
81. Sillanpää, J., Nyberg, M., & Laippala, P. (2003). A new table for work with a microscope, a solution to ergonomic problems. Applied Ergonomics, 34(6), 621-628.
82. Simoneau, S., St-Vincent, M., & Chicoine, D. (1996). Work-Related Musculoskeletal Disorders (WMSDs)–A Better Understanding for More Effective Prevention. IRSST, Québec, 14.
83. Snyder, H. L. (1979). The sensitivity of response measures of alphanumeric legibility to variations in dot matrix display parameters. Human Factors, 21(4), 457-471.
84. Snyder, H. L., & Maddox, M. E. (1978). Optimal element size-shape spacing combinations for a 567 matrix in information transfer from computer-generated dot-matrix displays. Tech. Rep. HFL-78-3, ARO-78-1.
85. Taptagaporn, S., & Saito, S. (1990). How display polarity and lighting conditions affect the pupil size of VDT operators. Ergonomics, 33(2), 201-208.
86. Wang, A. H., & Chen, M. T. (2000). Effects of polarity and luminance contrast on visual performance and VDT display quality. International Journal of Industrial Ergonomics, 25(4), 415-421.
87. Xu, W., & Zhu, Z. (1990). The effects of ambient illumination and target luminance on colour coding in a CRT display. Ergonomics, 33(7), 933-944.
88. Yoshitake, H. (1971). Relations between the symptoms and the feeling of fatigue. Ergonomics, 14(1), 175-186.
89. Zhu, Z., & Wu, J. I. A. N. M. I. N. G. (1990). On the standardization of VDT's proper and optimal contrast range. Ergonomics, 33(7), 925-932.