研究生: |
姚少凌 Chao-Ling Yao |
---|---|
論文名稱: |
Pseudomonas fluorescens生產脂肪水解酵素固定於聚甲基丙烯醯胺以生產S-AMPA的應用 |
指導教授: |
朱一民
I-Ming Chu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 水解酵素 、聚甲基丙烯醯胺 |
外文關鍵詞: | lipase, PMAA, Pseudomonas fluorescens, MAMP, AMPA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於酵素具有高專一性、高反應性、高立體選擇性等優點,近年來利用酵素進行非對掌異構物之光學分割研究因而廣為受到重視,而酵素固定化技術的進步也使酵素的應用更具高穩定性和可重複使用性。所以本研究藉由專利菌株Pseudomonas fluorescens IFO 12055 所獲得的細胞內脂肪酵素lipase,固定化於自行製備之聚甲基丙烯醯胺共聚物擔體上,進行反應物 MAMP(Methyl-3-Acetylthio -2-Methylpropionate)酯鍵位置的水解反應,希望藉由不同反應條件的探討,能製備出高光學純度的產物 S-AMPA(Acetylthio-2 -Methylpropionic acid)(抗高血壓藥物 Captopril之前驅物)。
實驗結果發現將lipase共價鍵結固定化於具孔洞性的聚甲基丙烯醯胺共聚物擔體上時,於50℃、pH=7.6具有極佳的長時間熱穩定度(20天後仍具有原活性的80%以上),且進行20個批次反應的操作,亦能維持80%的活性與高光學純度的表現。然而實驗發現,高濃度的MAMP不能完全分散溶解於水溶液中,導致固定化酵素活性的抑制,因此使用不同溶劑或添加界面活性劑作為改善的方法。此外實驗上亦發現,反應基質MAMP會有自然水解的現象;產物AMPA在水中會做進一步的醇解反應,並且酵素會受到酸性產物生成所造成的pH值下降而有失活的現象,這些都會影響到產物S-AMPA的光學純度與產率。所以本實驗目的在於尋找提高MAMP濃度的方法,以及求出各反應機構的速率常數,希冀藉此得到S-AMPA的大量化生產。
1. 劉英俊、汪金追、劉裕國, "最新微生物應用工業",中央圖書出版社 第四版,台北(1996)
2. 蔡新, "生物技術開發中心言發動向報導-參、生技產品關鍵技術:III 特用酵素技術之開發",生物產業,8,2,76-77,1997
3. Swaisgood, H. E., "Immobilized of enzymes and some applications in the food industry", Benjamin/Cummings , Menlo Park, 1985
4. Chubata, I., "Immobilization enzymes-research and development", Kodansha, Tokyo, 1978
5. Trevan, M. D., Immobilization enzymes: Introduction and application in biotechnology, Wiley, New York, 1980
6. Kennedy, J. F., Melo, E. H. M., "Immobilization enzymes and cells", Chem. Emg. Prog., P81-89, 1990
7. Cabral, J. M. S., Kennedy, J. F., In:Protein immobilization: Fundaments and applications, (Taylor, R. F.), Marcel Dekker, New York, 1991
8. Church, J. M., " Supension polymerization", Chem. Eng., 73:P79, 1966
9. 林建中, 高分子化學原理, 歐亞書局, 台北, P140, 1989
10. Munzer, M., Trommsdorff, E., "Suspension polymerization", High Polym., 29:P106, 1977
11. Wang, D., Li, M., He, B., "Immobilization of aminoacylase form Aspergillus oryzae on synthetic modified polyacrylamide", Biotechno. and Appl. Biochem., 16:P115-124, 1992
12. Arshady, R., Ledwith, A., "Suspension polymerisation and its application to the preparation of polymer support", Reactive Polymers, 1:P159-174, 1983
13. Arshady, R., "Development of new hydrophilic polymer supports based on dimethylacrylamide", Colloid Polymer Science, 268:P948-958, 1990
14. Arshady, R., "Polymer supports bead on dimethylacrylamide and 3-formamideopropyl acrylate", Polymer, 23:P1099, 1982
15. Lee, W. C., Hong, C. T., "Immobilization of invertase onto a copolymer of methacrylamide and N,N-methylene-bis(acrylamide) ", Appl. Biochem. and Biotechnol., 45/46:P663-672, 1994
16. 廖順榮,聚甲基丙烯醯胺固定酵素法在Hydantoinase之應用,國立清華大學碩士論文,1999
17. Cushman, D. W., Cheung, M. S., Sabo E. F., Ondetti, M. A., Design of potent competitive inhibitors of angiotensin-converting enzyme: Carboxyalkanoyl and mercaptoalkanoyl amino acids, Biochemistry, 16:P5484-5491, 1977
18. Ondetti, M. A., Cushman, D. M., Inhibition of renin-angiotensin-system: A new approach to the theory of hypertension, J. Med. Chem., 24:P355-361, 1981
19. Cushman, D. W., Ondetti M. A., Inhibitors of angiotensin-converting enzyme for treatment of hypertension, Biochem. Pharmacol., 29:P1871-1877, 1980
20. Stampa Diez Del Corral et al., Optical resolution of DL-3-Acetylthio-2-Methylpropionic acid using L-2-Aminobutanal as resolving agent, United States Patent: 5,367,091, 1994
21. Gu, Q. M., Reddy, D. R., Sih, C. J., Biofunctional chiral synthons via biochemical methods. VIII. Optically-active 3-Aroylthio-2-methypropionic acids, Tetrahedron Letter, 27:P5203-5206, 1996
22. Patel, R. N., Howell, J. M., Banerjee, A., Fortney, K. F., Szarka, L. J., Stereoselective enzymatic esterfication of 3-benzoylthio-2methylpropanoic cid, Applied Microbiology Biotechnology, 36:P29-34, 1991
23. Patel, R. N., Howell, J. M., McNamee, C. G., Fortney, K. F., Szarka, L. J., Stereoselective enzymatic hydrolysus of acethylthio-methyl-benzenepropanoic acid and 3-acetylthio-2-methylpropanoic acid, Biotechnol. and Biochem., 16:P34-47, 1992
24. Howell et al, Process for separation of enantiomeric 3-mercapto-2-substituted alkanoic acid using lipase P30 and synthesis of captopril type compounds, United States Patent: 5,420,037, 1995
25. Tai, D. F., Hung, C. C., Huang, H. Y., Shin, I. L, A tandem enzymatic hydrolysis of 3-acetythio-2methylpropionic methy ester, Biotechnol. Lett., 15:P1229-1232, 1993
26. Brockman, H. L., Momsen, W. E., Tsujita, T., Lipid-lipid complexes-properties and effects on lipase binding to surface, J. Am. Oil. Chem. Soc, 65:P891-896, 1988
27. Brzozowski, A. M., Derewenda, U., Dererwenda, Z. S., Dodson, G. G., Lawson, D. M., Turkenburg, J. P., Blorkling, F., Huge-Jenson, B., Patkar, S. A., Thim, L., A model for interfiacial activation in lipases from the structure of a fungal lipase-inhibitor complex, Nature, 351:P491-495, 1991
28. Zaks, A., Klibanov, F. M., Enzymatic catalysis in organic media at 100℃, Science, 224:P1241-1249, 1984
29. Gilbert E. J., Pseudomonas lipases biochemical properties and molecular cloning, Enzyme Microb. Technol., 15:P634-645, 1993
30. Millqvist, A., Adlercreutz, P., Mattiasson, B., Lipase-catalyzed alcoholysis of triglycerides for the preparation of 2-monoglycerides, Enzyme Micro.Technol., 16: P1042-1047 (1994)
31. Bornscheuer, U. T., Lipase-catalyzed synthese of mono-acylglycerols, Enzyme Microb. Technol., 17:P578-586, 1995
32. Bornscheuer, U. T., Yamane,T., Activity and stability of lipase in the solid-phase glycerolysis of triolein, Enzyme. Microb. Technol., 16:P864-869, 1994
33. 林家立, 酵素催化不對稱反應, 化學, 55:P59, 1997
34. 李蓮茲, 尹福秀, 光學活性藥物製備技巧漫談, 化工技術, 5:P205-212, 1997
35. Chen, C. S., Sih, C. J., Fujimoto, Y., Girdaukas, G., Quantitative analyses of biochemical kinetic resolutions of enantiomers, J. Am. Chem. Soc.,104:P7294-7299, 1982
36. Lipases for resolution and asymmetric synthesis, published by Amano Pharmaceutical Co., Ltd., 1996
37. Kazalauakas, R. J., Weissfloch, A. N. E., Rappaport, A. T., Cuccia, L. A., A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida regosa, J. Org. Chem, 56:P2656-2665, 1991
38. Weissfloch, A. N. E., Kazalauakas, R. J., Enantiopreference of lipase from Pseudomonas cepacia toward primary alcohols, J. Org. Chem., 60:6959-6969, 1995
39. Xie, Z. F., Suemuns, H., Sakai, K., Stereochemical observation on the enantioselective hydrolysis using Pseudomonas fluorescens lipase, Tetrahedron: Asymmetry, 1:P395-402, 1990
40. Hultin, P. G., Jones, J. B., Dilemma regarding an active site model for porcine pancreatic lipase, Tetrahedron Letters, 33:P1399