簡易檢索 / 詳目顯示

研究生: 于思舞
Siul Lucy Urbina Amador
論文名稱: Automatic Cause and Effect Extraction Based on Syntactic Similarity from Sentences with Causal Cue Words
基於因果線索之語句句法相似度來自動擷取因果關係
指導教授: 蘇豐文
口試委員: 蘇豐文
石維寬
陳煥宗
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 26
中文關鍵詞: 因果相似度語句句法
外文關鍵詞: Cause and Effect, Similarity, Causal Cue Words
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Causality Extraction have a lot of application in different fields of the information technology such as development of systems that need to interact with humans,artificial intelligence applications, analysis of interpersonal relationships and public decision making, etc. In this research we propose a method for Automatic Cause and Effect Extraction based on Syntactic Similarity from Sentences with
    Causal Cue Words.


    1. Introduction .......................................................................................................................... 1 2. Related Work ........................................................................................................................ 2 3. Method ..................................................................................................................................... 5 3.1 The Data .............................................................................................................................. 5 3.2 Stanford Parser ................................................................................................................... 9 3.3 Jaccard Similarity Coefficients............................................................................................ 9 3.5 Similarity Based Causality Extraction............................................................................... 12 3.5 NP cue word NP ................................................................................................................ 15 4 Results ................................................................................................................................. 17 4.1 NP cue word NP ................................................................................................................ 17 4.2 Similarity Based Causality Extraction............................................................................... 18 4.3 Error Analysis .................................................................................................................... 19 5 Conclusions ........................................................................................................................... 1 6 References ............................................................................................................................ 1

    1. W. Mao, et al., "From Causal Scenarios to Social Causality: An
    Attributional Approach" IEEE IS, vol. 26, pp. 48-57, 2011.
    2. A. Sobrino, J.A. Olivas, and C. Puente, "Causality and imperfect
    causality from texts: A frame for causality in social sciences”, in Proc.
    FUZZ-IEEE, 2010, pp.1-8.
    3. Roxana Girju, Automatic detection of causal relations for Question
    Answering, Proceedings of the ACL 2003 workshop on Multilingual
    summarization and question answering, p.76-83, July 11, 2003,
    Sapporo, Japan.
    Eduardo Blanco, Nuria Castell, Dan Moldovan (2008). Causal Relation
    Extraction. In Proceedings of the Sixth International Conference on
    Language Resources and Evaluation (LREC'08). Marrakech, Morocco.
    5. C. Puente, A. Sobrino, J. A. Olivas, ‘Extraction of conditional and causal
    sentences from queries to provide a flexible answer’. Eighth
    International Conference Flexible Question Answering FQAS 2009.
    Springer, LNCS vol. 5822, pp. 477-487.
    6. Marie-Catherine de Marneffe, Bill MacCartney and Christopher D.
    Manning. (2006). Generating Typed Dependency Parses from Phrase
    Structure Parses. In LREC 2006.
    7. Stephen V. Cole, Matthew D. Royal, Marco G. Valtorta, Michael N. Huhns
    and John B. Bowles (2006). A Lightweight Tool for Automatically
    Extracting Causal Relationships from Text. Southeast Con, 2006.
    Proceedings of the IEEE.
    Du-Seong Chang, Key-Sun Choi, Causal relation extraction using cue
    phrase and lexical pair probabilities, Proceedings of the First
    international joint conference on Natural Language Processing, March
    22-24, 2004, Hainan Island, China.
    9. Cristina Puente, José A. Olivas. Analysis, detection and classification of
    certain conditional sentences in text documents. IC-AI 2009: 838-843.
    10. Antonio Sorgente, Giuseppe Vettigli, Francesco Mele. Automatic
    Extraction of Cause-Effect Relations in Natural Language Text.
    DART@AI*IA 2013: 37-48.
    11. Riaz, M., & Girju, R. Another look at causality: Discovering scenariospecific
    contingency relationships with no supervision. In Semantic Computing (ICSC), 2010 IEEE Fourth International Conference on (pp.
    361-368). IEEE.
    12. Ashwin Ittoo, Gosse Bouma, Extracting explicit and implicit causal
    relations from sparse, domain-specific texts, Proceedings of the 16th
    international conference on Natural language processing and
    information systems, June 28-30, 2011, Alicante, Spain.
    13. Mehwish Riaz and Roxana Girju. Toward a Better Undrstanding of
    Causality between Verbal Events: Extraction and Analysis of the Causal
    Power of Verb – Verb Associations. SIGDIAL 2013 conference, pages
    21-30.
    14. R. Girju, “Toward Social Causality: An Analysis of Interpersonal
    Relationships in Online Blogs and Forums”, in Proc. ICWSM, 2010.
    15. Dipanjan Das , Noah A. Smith, Semi-supervised frame-semantic
    parsing for unknown predicates, Proceedings of the 49th Annual
    Meeting of the Association for Computational Linguistics: Human
    Language Technologies, June 19-24, 2011, Portland, Oregon.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE