研究生: |
楊宜庭 Yang, Yi-Ting |
---|---|
論文名稱: |
探討Transgelin和Galectin-1在神經內分泌子宮頸癌細胞中扮演的角色 The role of Transgelin and Galectin-1 in neuroendocrine cervical cancer |
指導教授: |
詹鴻霖
Chan, Hong-Lin |
口試委員: |
周秀專
Chou, Hsiu-Chuan 高承源 Kao, Cheng-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 神經內分泌子宮頸癌 |
外文關鍵詞: | transgelin, galectin-1 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據台灣衛生福利部於2018年的統計中指出,惡性腫瘤在台灣十大死因中位居第一,子宮頸癌在台灣女性癌症排名中則位居第七。人類乳突病毒 (HPV)的感染是造成子宮頸癌的主因,初期症狀不容易被診斷出來,一旦子宮頸癌發生轉移的現象該患者之五年存活率會降低許多。而罹患子宮頸癌的女性中神經內分泌癌之發生率則位居第三,屬於罕見的子宮頸癌類型,與鱗狀細胞癌和腺癌相比是一種較為惡性的腫瘤型態。因此,為了更有效治療罕見發生的神經內分泌子宮頸癌,了解神經內分泌子宮頸癌與其他類型子宮頸癌不同的分子作用機制是重要的任務。在先前的研究中利用二維差異電泳 (2D-DIGE)與基質輔助雷射脫附游離飛行時間質譜儀 (MALDI-TOF-MS)分析神經內分泌子宮頸癌細胞 (HM-1)與其他三種子宮頸癌細胞 (Caski、ME-180、HeLa)之間蛋白質表現的差異,挑選出在HM-1細胞中具有高度蛋白表現量的Transgelin及Galectin-1作為後續研究的標的。在本研究中,使用從人類組織中分離的神經內分泌子宮頸癌細胞HM-1及HM-2,利用RNA干擾技術抑制Transgelin及Galectin-1蛋白表現量,Transgelin基因被沉默後能夠有效抑制神經內分泌子宮頸癌細胞的侵襲能力,也會導致細胞週期的停滯、促進細胞凋亡進而導致細胞增殖能力的下降,影響TGB-β/Smad路徑的訊號傳遞;Galectin-1基因被沉默後也能夠抑制神經內分泌子宮頸癌細胞的爬行能力及細胞增殖能力降低。透過本研究的結果可以知道Transgelin及Galectin-1都會影響神經內分泌子宮頸癌的爬行能力及增殖能力,針對神經內分泌子宮頸癌的檢測或是治療都是很好的蛋白標的。
According to the statistics of Ministry of Health and Welfare in 2017, malignant tumor is ranked first in ten leading causes of the death. Cervical cancer is ranked seventh in the ranking of female cancer. Infection of HPV is the main cause of cervical cancer. In the early stage, it is hard to be diagnosed. Moreover, the metastasis of cervical cancer decreases five-year-survival rates. Neuroendocrine cervical cancer is ranking on the third position. It belongs to rare type of cervical cancer and also be the more malignant cancer type, compared to squamous cell carcinoma and adenocarcinoma. In order to have a effective treatment in neuroendocrine cervical cancer, molecular mechanism is necessary to be researched. In the previous study, it performs 2D-DIGE and MALDI-TOF-MS to analyze the differentially expressed proteins in neuroendocrine cells (HM-1) and other types of cervical cancer cells (Caski, ME-180, HeLa). Transgelin and Galectin-1 are selected as the candidate proteins because of high protein expression in HM-1 cells. In this study, use small interfering RNA (siRNA) to knockdown Transgelin and Galectin-1 expression in HM-1and HM-2 which isolated from human tissue. The migration ability and proliferation ability of neuroendocrine cervical cancer cells are effectively inhibited. Also, signal transduction of TGB-β/Smad pathway is inhibited. After Galectin-1 being knockdown, it inhibits migration and proliferation in neuroendocrine cervical cancer cells. As a result, Transgelin and Galectin-1 affect the migration and proliferation ability in neuroendocrine cervical cancer. There are protein targets in detection and treatment of neuroendocrine cervical cancer.
1. Gelband, H., et al., Disease Control Priorities, (Volume 3): Cancer. 2015: The World Bank.
2. Bosch, F.X., et al., Prevalence of Human Papillomavirus in Cervical Cancer: a Worldwide Perspective. JNCI: Journal of the National Cancer Institute, 1995. 87(11): p. 796-802.
3. Burd, E.M., Human papillomavirus and cervical cancer. Clinical microbiology reviews, 2003. 16(1): p. 1-17.
4. Waggoner, S.E., Cervical cancer. The lancet, 2003. 361(9376): p. 2217-2225.
5. Bosch, F., et al., Risk factors for cervical cancer in Colombia and Spain. International journal of cancer, 1992. 52(5): p. 750-758.
6. BRINTON, L.A., et al., PARITY AS A RISK FACTOR FOR CERVICAL CANCER. American Journal of Epidemiology, 1989. 130(3): p. 486-496.
7. Frumovitz, M., Small- and Large-Cell Neuroendocrine Cervical Cancer. Oncology (Williston Park), 2016. 30(1): p. 70, 77-8, 93.
8. Ardill, J.E. and B. Erikkson, The importance of the measurement of circulating markers in patients with neuroendocrine tumours of the pancreas and gut. Endocr Relat Cancer, 2003. 10(4): p. 459-62.
9. Kloppel, G., Oberndorfer and his successors: from carcinoid to neuroendocrine carcinoma. Endocr Pathol, 2007. 18(3): p. 141-4.
10. Taal, B.G. and O. Visser, Epidemiology of neuroendocrine tumours. Neuroendocrinology, 2004. 80 Suppl 1: p. 3-7.
11. Speisky, D., et al., Molecular Profiling of Pancreatic Neuroendocrine Tumors in Sporadic and Von Hippel-Lindau Patients. Clinical Cancer Research, 2012. 18(10): p. 2838.
12. Seregni, E., et al., Clinical significance of blood chromogranin A measurement in neuroendocrine tumours. Annals of Oncology, 2001. 12(suppl_2): p. S69-S72.
13. Chou, W.C., et al., Plasma chromogranin a levels predict survival and tumor response in patients with advanced gastroenteropancreatic neuroendocrine tumors. Anticancer Research, 2014. 34(10): p. 5661-5669.
14. Gadducci, A., S. Carinelli, and G. Aletti, Neuroendrocrine tumors of the uterine cervix: A therapeutic challenge for gynecologic oncologists. Gynecologic Oncology, 2017. 144(3): p. 637-646.
15. Manchana, T., et al., Targeted therapies for rare gynaecological cancers. The Lancet Oncology, 2010. 11(7): p. 685-693.
16. Margolis, B., et al., Natural history and outcome of neuroendocrine carcinoma of the cervix. Gynecologic Oncology, 2016. 141(2): p. 247-254.
17. Lin, L.H., et al., Biomarker discovery for neuroendocrine cervical cancer. Electrophoresis, 2014. 35(14): p. 2039-2045.
18. Lawson, D., M. Harrison, and C. Shapland, Fibroblast transgelin and smooth muscle SM22α are the same protein, the expression of which is down-regulated in many cell lines. Cell Motility, 1997. 38(3): p. 250-257.
19. Han, M., et al., Smooth muscle 22 alpha maintains the differentiated phenotype of vascular smooth muscle cells by inducing filamentous actin bundling. Life Sci, 2009. 84(13-14): p. 394-401.
20. Pankajakshan, D., et al., Successful transfection of genes using AAV-2/9 vector in swine coronary and peripheral arteries. The Journal of surgical research, 2012. 175(1): p. 169-175.
21. Assinder, S.J., J.-A.L. Stanton, and P.D. Prasad, Transgelin: An actin-binding protein and tumour suppressor. The International Journal of Biochemistry & Cell Biology, 2009. 41(3): p. 482-486.
22. Zhou, H.-m., et al., Transgelin increases metastatic potential of colorectal cancer cells in vivo and alters expression of genes involved in cell motility. BMC Cancer, 2016. 16(1): p. 55.
23. Lin, Y., et al., Association of the actin-binding protein transgelin with lymph node metastasis in human colorectal cancer. Neoplasia, 2009. 11(9): p. 864-73.
24. Liu, F.-T. and G.A. Rabinovich, Galectins as modulators of tumour progression. Nature Reviews Cancer, 2005. 5(1): p. 29-41.
25. Thijssen, V.L., et al., Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim Biophys Acta, 2015. 1855(2): p. 235-47.
26. Shen, K.H., et al., Role of galectin-1 in urinary bladder urothelial carcinoma cell invasion through the JNK pathway. Cancer Sci, 2016. 107(10): p. 1390-1398.
27. Camby, I., et al., Galectin-1: a small protein with major functions. Glycobiology, 2006. 16(11): p. 137R-157R.
28. Zhang, L., et al., Reversal of galectin-1 gene silencing on resistance to cisplatin in human lung adenocarcinoma A549 cells. Biomed Pharmacother, 2016. 83: p. 265-270.
29. Wang, F., et al., Galectin-1 knockdown improves drug sensitivity of breast cancer by reducing P-glycoprotein expression through inhibiting the Raf-1/AP-1 signaling pathway. Oncotarget, 2017. 8(15): p. 25097-25106.
30. Sanjuan, X., et al., Differential expression of galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology, 1997. 113(6): p. 1906-15.
31. van den Brule, F., et al., Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest, 2003. 83(3): p. 377-86.
32. Choufani, G., et al., The levels of expression of galectin-1, galectin-3, and the Thomsen-Friedenreich antigen and their binding sites decrease as clinical aggressiveness increases in head and neck cancers. Cancer, 1999. 86(11): p. 2353-63.
33. Kim, H.J., et al., Galectin 1 expression is associated with tumor invasion and metastasis in stage IB to IIA cervical cancer. Hum Pathol, 2013. 44(1): p. 62-8.
34. Ellerhorst, J., et al., Differential expression of endogenous galectin-1 and galectin-3 in human prostate cancer cell lines and effects of overexpressing galectin-1 on cell phenotype. Int J Oncol, 1999. 14(2): p. 217-24.
35. Park, G.H., et al., TAGLN expression is upregulated in NF1-associated malignant peripheral nerve sheath tumors by hypomethylation in its promoter and subpromoter regions. Oncol Rep, 2014. 32(4): p. 1347-54.
36. Zhou, L., et al., Upregulation of transgelin is an independent factor predictive of poor prognosis in patients with advanced pancreatic cancer. Cancer Sci, 2013. 104(4): p. 423-30.
37. Lee, E.-K., et al., Transgelin Promotes Migration and Invasion of Cancer Stem Cells. Journal of Proteome Research, 2010. 9(10): p. 5108-5117.
38. Yang, Z., et al., Transgelin Functions as a Suppressor via Inhibition of ARA54-Enhanced Androgen Receptor Transactivation and Prostate Cancer Cell Growth. Vol. 21. 2007. 343-58.
39. Foster, I., Cancer: A cell cycle defect. Radiography, 2008. 14(2): p. 144-149.
40. Casem, M.L., Chapter 13 - Cell Cycle, in Case Studies in Cell Biology, M.L. Casem, Editor. 2016, Academic Press: Boston. p. 299-326.
41. Reed, J.C., Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol, 1997. 34(4 Suppl 5): p. 9-19.
42. Kroemer, G., L. Galluzzi, and C. Brenner, Mitochondrial membrane permeabilization in cell death. Physiol Rev, 2007. 87(1): p. 99-163.
43. Weston, C.R. and R.J. Davis, The JNK signal transduction pathway. Curr Opin Cell Biol, 2007. 19(2): p. 142-9.
44. Davis, R.J., Signal transduction by the JNK group of MAP kinases. Cell, 2000. 103(2): p. 239-52.
45. Bogoyevitch, M.A. and B. Kobe, Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev, 2006. 70(4): p. 1061-95.
46. Kennedy, N.J. and R.J. Davis, Role of JNK in tumor development. Cell cycle (Georgetown, Tex.), 2003. 2(3): p. 199-201.
47. Chang, Q., et al., JNK1 activation predicts the prognostic outcome of the human hepatocellular carcinoma. Mol Cancer, 2009. 8: p. 64.
48. She, Q.B., et al., Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res, 2002. 62(5): p. 1343-8.
49. Chauhan, D., et al., JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem, 2003. 278(20): p. 17593-6.
50. Oleinik, N.V., N.I. Krupenko, and S.A. Krupenko, Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene, 2007. 26(51): p. 7222-30.
51. Bierie, B. and H.L. Moses, TGFβ: the molecular Jekyll and Hyde of cancer. Nature Reviews Cancer, 2006. 6(7): p. 506-520.
52. Massague, J. and D. Wotton, Transcriptional control by the TGF-beta/Smad signaling system. Embo j, 2000. 19(8): p. 1745-54.
53. Attisano, L. and J.L. Wrana, Signal transduction by the TGF-beta superfamily. Science, 2002. 296(5573): p. 1646-7.
54. Lecanda, J., et al., TGFbeta prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle, 2009. 8(5): p. 742-56.
55. Harvey, S., et al., Insights into a plasma membrane signature. Physiol Genomics, 2001. 5(3): p. 129-36.
56. Chiang, W.F., et al., Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncol, 2008. 44(4): p. 325-34.
57. Hsu, Y.-L., et al., Galectin-1 promotes lung cancer tumor metastasis by potentiating integrin α6β4 and Notch1/Jagged2 signaling pathway. Carcinogenesis, 2013. 34(6): p. 1370-1381.
58. Sherr, C.J. and J.M. Roberts, Living with or without cyclins and cyclin-dependent kinases. Genes Dev, 2004. 18(22): p. 2699-711.
59. Hydbring, P., M. Malumbres, and P. Sicinski, Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nature Reviews Molecular Cell Biology, 2016. 17: p. 280.