研究生: |
吳智瑋 Jr-Wei Wu |
---|---|
論文名稱: |
電漿顯示器內烙痕現象生成機制的分析與研究 Analysis of Image Sticking Phenomenon Formation Mechanism in ac-PDP |
指導教授: | 柳克強博士 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 130 |
中文關鍵詞: | 烙痕 、溫度 、二次電子 、螢光粉 、溫度淬滅 |
外文關鍵詞: | Image Sticking, Temperature, secondary electron, temperature quenching |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究發現,電漿顯示器面板溫度的變化和烙痕現象產生的程度有密切的關係。利用直接(用風扇帶走熱)或間接(改變灰階或維持電壓)方法來改變面板溫度,並觀察黑烙痕與白烙痕的溫度相依性。
實驗結果發現,烙痕區域的放電電流峰值增加,放電電流的峰值提前,最低維持電壓降低。當面板溫度升高時,黑烙痕現象變得比較嚴重。黑烙痕可能的產生機制有三:一是溫度的升高導致面板局部的氧化鎂性質發生變化,造成局部的二次電子發射係數增加。而由模擬結果發現,當二次電子發射係數從0.3增加到0.9,最低維持電壓有大約45V的降低。降。但是從二次電子產生機制的觀點來看,根據理論計算二次電子係數的模型,影響二次電子發射係數的參數中並無隨溫度變化的函數。因此,二次電子發射係數隨溫度變化的機制仍待更進一步的研究。第二種可能機制是由於物質的「本質載子濃度」會隨溫度變化而增加,當溫度增加時,在導帶上會產生比較多的電子,因此當溫度上升的時候,導帶的電子有較大的機會脫離物質表面,可能產生較多的二次電子。但實際經由理論公式推導發現,由於氧化鎂是絕緣體,也就是能隙很大,因此氧化鎂的本質載子濃度幾乎不受溫度影響,因此此機制並不足以解釋所觀察到最低維持電壓的下降。第三種可能的機制是中性氣體粒子的變化。由理想氣體公式來看,假設氣壓固定,當面板溫度增加,會造成局部的中性氣體粒子密度減少。而空間中氣體粒子密度的減少會使的電子碰撞減少,也就是電子的平均自由徑變長,因此電子的平均能量會比較高,並且造成比較低的最低維持電壓。模擬結果驗證了這個假設,當面板溫度從300 K增加到500 K,最低維持電壓大約降低了19 V,並且可以觀察到電子平均能量隨著溫度增加而增加。
實驗觀察到,當溫度增加的時候白烙痕的現象變得嚴重,本論文提出可能的產生機制為「螢光粉的溫度淬滅」。此即螢光粉的發光效率會隨著溫度增加而降低,導致溫度較高的區域,螢光粉效率較低,產生的可見光較少,增加了烙痕區域和正常區域的亮度差,使的白烙痕現象加重。然而,詳細的螢光粉性質受溫度影響改變機制仍待更進一步的研究。
除此之外,在本論文研究中,也討論了面板的發光效率、面板溫度以及烙痕程度的相關性。但是從實驗結果中並沒有觀察到很顯著的關係。
It is found that panel temperature plays an important role in both background image sticking and white image sticking formation. Experiments which change the panel temperature by either direct way, i.e., use fans to take off heat, or indirect way, i.e., change cell temperature by varying sustain voltage or grayscale level, are designed to investigate the temperature dependency of image sticking formation.
Mechanisms are proposed to explain the formation mechanism of both background image sticking and white image sticking.
The higher temperature in the image sticking cells may cause temporal increase of secondary electron coefficient of MgO and thus results in lower firing voltage which enhance the discharge intensity and produce the background image sticking. This is verified by experiment and simulation in this research. However, from the production mechanism of secondary electron point of view, the secondary electron coefficient seems not be affected by the temperature. Another possible mechanism of background image sticking formation is that the gas density may be decreased at the higher temperature region. Lower gas density may results in higher electron temperature because the mean free paths of electrons are longer. This could also increase the discharge current and lowered firing voltage. This is also verified by simulation in latter paragraph.
Higher temperature may also decrease the phosphor efficiency and cause the decrease of cell luminance thus results in white image sticking. It is concluded that the decrease of phosphor efficiency is possibly caused by the “temperature quenching” mechanism of phosphor emission. This is verified by experiment curve found in a phosphor data book. However, the detail conditions and phosphor efficiency behavior affected by the thermal quenching effect of most of the VUV phosphor needs further exploration.
Correlation between panel temperature, degree of image sticking and panel luminous efficiency is discussed. The results show that there is no obvious connection between panel luminance and panel temperature.
1. J. P. Boeuf, J. Appl. D : Appl. Phys. 36, R53 (2003).
2. B. L. Xu, et al., SID`03, 455 (2003).
3. Komaki T,e al., IDW’99 , 587 (1999).
4. Sato Y, et al., SID`02 1017 (2002).
5. Toyoda O, et al., IDW’99 , 599 (1999).
6. Hashimoto Y,et al., SID`02, 10, 151 (2002).
7. Yoshikawa K,et al., Japan. Display , 92, 605 (1992).
8. Y. Ikeda, et al., J. Appl. Phys. 86, 2341 (1999).
9. C.K.Yoon, et al., SID’99, 272 (1999).
10. H. S. Tae, et al., SID`03, pp. 788–791 (2003).
11. J. H. Choi, et al., IDW`03, 913 (2003).
12. H. J. Lee, et al., SID`04, 214 (2004).
13. J. W. Han, et al., IDW`04, 965 (2004).
14. H. Kim, et al., IDW’ 03, 837 (2003).
15. 林明緯碩士論文 清華大學 (2004).
16. G. Blasse ,et al., “Luminescent Materials”, Springer-Verlag (1994).
17. G. F. J. Garlick, “Luminescent Materials”, Oxford (1949).
18. 蛍光体同学会, “蛍光体ハソドブック”, オーム社, 昭和62年12月 (1987).
19. Seitz, F., Trans. Faraday Soc. 35, 74 (1939).
20. Von Hippel, A., Z. Phys. 101, 680 (1936).
21. H. D. Hagstrum, Phys. Rev. 104, 672 (1956).
22. H. D. Hagstrum, Phys. Rev. 122, 83 (1961).
23. Yasushi Motoyama, et al., IEEE Trans. Electron Devices, 94, 1, 764 (2001).
24. Yu. P. Raizer, “Gas discharge physics”, Springer, Berlin, p.133 (1997).
25. 劉如熹, 紀喨勝, “紫外光發光二極體用螢光粉介紹” 全華科技圖書.
26. 江弘祺碩士論文 清華大學 (2004).
27. Sean J. Yoon, et al., Jpn. J. Appl. Phys. 40, 809 (2001).
28. M. O. Aboelfotoh et al., J. Appl. Phys. 48, 4754 (1977).
29. H. D. Hagstrum, Phys. Rev. 96, 336 (1954).
30. Martin A. Pomerantz, Phys. Rev. , 70, 33 (1946).
31. K. S. Moon, et al., J. Appl. Phys. , 86, 4049 (1999).
32. J. Y. Lim, et al., J. Appl. Phys. , 94, 764 (2003).
33. 何彥政碩士論文 清華大學 (2004).
34. Yasushi, et al, IEEE Trans. Electron Devices, 48, 8, 1568 (2001).
35. Sean J. Yoon, et al., Jpn. J. Appl. Phys. 40, 809 (2001).
36. M. O. Aboelfotoh, et al., J. Appl. Phys. 48, 4754 (1977).