研究生: |
黃國昌 |
---|---|
論文名稱: |
雙相磷酸鈣骨填充材料與其生物效應評估 Preparation and Biological Evaluation of Biphasic Calcium Phosphate for Bony Restoration |
指導教授: | 金重勳 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 氫氧基磷灰石 、雙相 、三鈣磷酸鹽 、多孔 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫氧基磷灰石(HA)因具有良好生物相容性、無細胞毒性,並且為人體中骨骼的主要成分,目前已被廣泛研究與使用在骨填充材料上。而β型式三鈣磷酸鹽(β-TCP)因植入生物體中能釋放出大量鈣、磷離子,有助於新骨的生長,亦為常用之磷酸鹽陶瓷,故將HA與β-TCP相互搭配使用,形成雙相磷酸鈣材料,更有利於骨缺損修補。本研究主要以單相的HA添加適當發泡劑,經由一次煆燒後得到雙相的HA與β-TCP多孔雙相磷酸鈣骨填充材料。
本研究所使用的發泡劑以蔗糖(Sucrose)為主,HA : Sucrose = 1 : 0.75(重量比),壓錠後,升溫至1000 ℃,持溫30分鐘後以爐冷方式降溫,便可得到多孔雙相磷酸鈣骨填充材料。在升溫過程中,蔗糖發泡完後便分解且揮發至空氣中,所得到之孔洞包含大孔(macro-pore)與小孔(micro-pore),大孔孔徑為100~150 μm,而小孔孔徑為0~50 μm。HA含量可在60 wt%以上,孔隙率可達70%,抗壓強度為0.2~0.6 MPa。這些性質可依HA與蔗糖比例,煆燒條件等而調整。材料無明顯細胞毒性也不會對生物體造成慢性發炎反應。
Hydroxyapatite(HA) has been wildly studied and used in bony implant, because HA has the advantages, such as free of cell toxicity, excellent bio-compatibility, and it is the major component of human bone. Beta-tricalcium phosphate(β-TCP) is also popular in implantation usage, due to its ability to release abundant calcium and phosphate ions that will provoke the bony growth. In this study, I aimed to prepare porous biphasic calcium phosphate materials as bony implant. We used a single phase HA and a foaming agent to form a porous biphasic(HA and β-TCP) material after one step calcination.
The major foaming agent used is sucrose. HA and sucrose with the ratio 1 to 0.75 was found optimal. After being calcined at 1000℃ for 30min, a porous and biphasic material was obtained. The sucrose decomposed and evaporated during the process. The material has micro- and macro-pores, and the pore size ranges from 0~50 μm and 100~150 μm, respectively. The porosity was higher than 70%, HA could be higher than 60wt%, and the compressive strength was about 0.2~0.6 MPa. All these parameters could be adjustable by HA/sucrose ratio and calcination parameters. The synthesized material was free of cell toxicity, and there was no long-term inflammation in situ.
1. 闕山樟,“骨科植入物生醫材料及器材”, 科儀新知,13,1,64-71, 1991.
2. 洪炳南, 醫學工程, 第四卷, 第一期, 23-31,1984.
3. 林峰輝, “鈉鈣矽磷生醫骨科玻璃陶瓷之研究”, 成功大學礦冶及材料科學研究所博士論文, 1989.
4. AH Melcher, Summary of biological considerations, J. Dent. Educ., 52, 812, 1988.
5. 韓宗立, “生醫用氫氧基磷灰石之研究”, 成功大學礦冶及材料科學研究所碩士論文, 1986.
6. 周更生, “生物陶瓷”, 尖端科技, 29-38, 1985.
7. R.R. Ramachandra, H.N. Roopa, T.S. Kannan,“Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders.”, J. Mater. Sci. Mater. Med., 8, 511, 1997.
8. H. W. Kim, “Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method.”, J. Mater. Sci. Mater. Med. 15, 1129-1134, 2004.
9. A.C. Tas, F. Korkusuz, M. Timicin, N. Akkas, “An investigation of the chemical synthesis and high-temperature sintering behavior of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics.” , J. Mater. Sci. Mter. Med., 8, 2, 91, 1997.
10. S.H. Rhee, J. Tanaka, “Hydroxyapatite coating on a collagen member by a miomimetic method.”, J. Amer. Ceram. Soc., 81, 11, 3029, 1998.
11. C.M. Lopatin, V. Pizziconi, T.L. Alford, T. Laursen, “Hydroxyapatite powders and thin films prepared by a sol-gel technique.”, Thin solid Films, 326, 1-2, 227, 1998.
12. P. Layrolle, A. Ito, T. Tateishi, “Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics.”, J. Amer. Ceram. Soc., 81, 6, 1421, 1998.
13. A. Jillavenkatesa, R.A. Condrate, “Sol-gel processing of hydroxyapatite.”, J. Mater. Sci., 33, 16, 4111, 1998.
14. H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, “Hydroxyapatite synthesized by a simplified hydrothermal method.”, Ceram. Int., 23, 1, 19, 1997.
15. I. Manjubala, M. Sivakumar, “In-situ synthesis of biphasic calcium phosphate ceramics using microwave irradiation.”, Mater. Chem. Phys., 71, 272-278, 2001.
16. U. Ripamonti, “Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models.”, Biomater., 17, 31-35, 1996.
17. K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka, H. Kobayashi, “Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits.”, Biomater., 23, 407-412, 2002.
18. S. H. Li, J. R. de Wijn, “Novel method to manufacture porous hydroxyapatite by dual-phase mixing.”, J. Am. Ceram. Soc., 86, 1, 65-72, 2003.
19. B. Flautre, M. Descamps, “Porous HA ceramics for bone replacement: Role of the pores and interconnections-experimental study in the rabbit.”, J. Mater. Sci. Mter. Med., 12, 679-682, 2001.
20. S. H. Li, J. R. de Wijn, “Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering.”, Wiley Periodicals, Inc., 2002.
21. J. P. Gittings, I.G. Turner, A.W. Miles, “Calcium phosphate open porous scaffold bioceramics.”, Key Engin. Mater., 284-286, 349-352, 2005.
22. M. H. Prado da Silva, A. F. Lemos, I. R. Gibson, J. M. F. Ferreira, “Porous glass reinforced hydroxyapatite materials produced with different organic additives.”, J. Non-Crys. Sol., 304, 286-292, 2002.
23. D. C. Tancred, B. A. O. McCormack, A. C. Corr, “A synthetic bone implant macroscopically identical to cancellous bone.”, Biomater., 19, 2303-2311, 1998.
24. Y. R. Duan, Z. R. Zhang, C. Y. Wnag, J. Y. Chen, X. D. Zhang, “Dynamic study of calcium phosphate formation on porous HA/TCP ceramics.”, J. Mater. Sci. Mter. Med., 15, 1205-1211, 2004.
25. Y. Leng, J. Chen, S. Qu, “TEM study of calcium phosphate precipitation on HA/TCP ceramics.”, Biomater., 24, 2125-2131, 2003.
26. Diorio, Acta Cryst., 11, 308, 1958.
27. Suyoshi Kijima, Masayuki Tsutsumi, J. of American Ceramic Society-Uerweij, 62, 9-10, 455, 1979.
28. Michael Jarcho, Clinical Orthopaedics and Related Research, 157, 259, 1981.
29. K. de Groot, “Bioceramics of calcium phosphate.”, CRC Press, Inc., Florida, 1983.
30. “Hydroxyapatite” Intermdics Orthopedics Inc., January, 1982.
31. Newsely, J. F. Osborn,“Structure and Textural Implications of Calcium Phosphates in Ceramics”in “Medical Properties of biomaterials”Edited By G. W. Has0tings and D. F. Williams, John Wiley & Sons Ltd., New York, 457-464, 1980.
32. Trombe, G. Montel. J. Inorg. Nucl. Chem., 40, 15, 1978.
33. Jiming Zhou, Xingdohg Zhang et al, J. Materials Sci.: Mater. In Med. 4, 83-85, 1993.
34. T. Negas and R. S. Roth, Journal of Research of the National Bureau of Standards-A. Physics and Chemistry, 72A, 6, 783, 1968.
35. I. Key, R. A. Young, and A. S. Posner, Nature, 1050, 1964.
36. E. J. Duff, A. A. Grant., Mechanical Properties of Biomaterials, Edited by G. W. Hastings and D. F. Williams, John Wiley & Sons Ltd., 465, 1980.
37. E. D. Case, I. O. Smith, M. J. Baumann, “Microcracking and porosity in calcium phosphate and the implications for bone tissue engineering.”, Mater. Sci. Engin. A, 390, 246-254, 2005.
38. S. F. Hulbert, J. C. Bokros, L. L. Hench, J. W. Wilson and G. Heimke, “Ceramics in clinical applications, past, present and future.”, Ceramics in clinical application, Ed. by P. Vincenzini, Elsevier Science Publishers B. V., 3-27, 1987.
39. K. de Groot, “Medical applications of calcium phosphate bioceramics”, 日本協會學術論文誌, 99, 943-953, 1991.
40. 李澤民,“電漿熔射生醫玻璃塗層與氫氧基磷灰石塗層特性研究”, 國立成功大學材料及工程研究所碩士論文, 1993.
41. F. J. McClure, Fluorine, “Ash, calcium, and phosphorus in human teeth”, J. Dent. Res., 29, 315, 1950.
42. Welch JH, Gutt W. High-temperature studies of the system calcium oxide-phosphorous pentoxide. J. Chem. Soc., 4442-4444, 1961.
43. Sugiyama KT. Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO)4: a host to accommodate large lithophile elements in the earth’s mantle. Phys. Chem. Minerals, 15, 125-130, 1987.
44. Hyun-Seung Ryu, Kug Sun Hong, Jung-Kun Lee, “Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility.”, Biomater., 25, 393-401, 2004.
45. Radin SR, Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. Ⅱ. Precipitation. J Biomed. Mater. Res., 27, 35-44, 1993.
46. Radin SR, Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. Ⅲ. Porous versus dense ceramics. J Biomed. Mater. Res., 28, 1303-1309, 1994.
47. G. Daculsi, R. Z. LeGeros, E. Nery, K. Lynch, B. Kerebel, “Transformation of biphasic calcium phosphate ceramics in vivo: Ultrastructural and physicochemical characterization.”, J. Biomed. Mater. Res., 23, 883-894, 1989.
48. 楊光列, “不同孔徑之多孔型氫氧磷灰石骨誘導與骨引導能力之研究”, 國防醫學院牙醫科學研究所碩士論文, 1997.
49. R. N. Panda, M. F. Hsieh, R. J. Chung, T. S. Chin,“FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique.”, J. Phys. Chem. Sol., 64, 193-199, 2003.
50. Rory M. Wilson, James C. Elliott, Stephanie E. P. Dowker, Luis M. Rodriguze-Lorenzo,“Rietveld refinements and spectroscopic studies of Ca-deficient apatite.”, Biomater., 26, 1317-1327, 2005.
51. E.M. Levin, C.R. Robbins and H.F. McMurdie, 107, Fig 246, 1964.