簡易檢索 / 詳目顯示

研究生: 黃國昌
論文名稱: 雙相磷酸鈣骨填充材料與其生物效應評估
Preparation and Biological Evaluation of Biphasic Calcium Phosphate for Bony Restoration
指導教授: 金重勳
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 101
中文關鍵詞: 氫氧基磷灰石雙相三鈣磷酸鹽多孔
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氧基磷灰石(HA)因具有良好生物相容性、無細胞毒性,並且為人體中骨骼的主要成分,目前已被廣泛研究與使用在骨填充材料上。而β型式三鈣磷酸鹽(β-TCP)因植入生物體中能釋放出大量鈣、磷離子,有助於新骨的生長,亦為常用之磷酸鹽陶瓷,故將HA與β-TCP相互搭配使用,形成雙相磷酸鈣材料,更有利於骨缺損修補。本研究主要以單相的HA添加適當發泡劑,經由一次煆燒後得到雙相的HA與β-TCP多孔雙相磷酸鈣骨填充材料。
    本研究所使用的發泡劑以蔗糖(Sucrose)為主,HA : Sucrose = 1 : 0.75(重量比),壓錠後,升溫至1000 ℃,持溫30分鐘後以爐冷方式降溫,便可得到多孔雙相磷酸鈣骨填充材料。在升溫過程中,蔗糖發泡完後便分解且揮發至空氣中,所得到之孔洞包含大孔(macro-pore)與小孔(micro-pore),大孔孔徑為100~150 μm,而小孔孔徑為0~50 μm。HA含量可在60 wt%以上,孔隙率可達70%,抗壓強度為0.2~0.6 MPa。這些性質可依HA與蔗糖比例,煆燒條件等而調整。材料無明顯細胞毒性也不會對生物體造成慢性發炎反應。


    Hydroxyapatite(HA) has been wildly studied and used in bony implant, because HA has the advantages, such as free of cell toxicity, excellent bio-compatibility, and it is the major component of human bone. Beta-tricalcium phosphate(β-TCP) is also popular in implantation usage, due to its ability to release abundant calcium and phosphate ions that will provoke the bony growth. In this study, I aimed to prepare porous biphasic calcium phosphate materials as bony implant. We used a single phase HA and a foaming agent to form a porous biphasic(HA and β-TCP) material after one step calcination.
    The major foaming agent used is sucrose. HA and sucrose with the ratio 1 to 0.75 was found optimal. After being calcined at 1000℃ for 30min, a porous and biphasic material was obtained. The sucrose decomposed and evaporated during the process. The material has micro- and macro-pores, and the pore size ranges from 0~50 μm and 100~150 μm, respectively. The porosity was higher than 70%, HA could be higher than 60wt%, and the compressive strength was about 0.2~0.6 MPa. All these parameters could be adjustable by HA/sucrose ratio and calcination parameters. The synthesized material was free of cell toxicity, and there was no long-term inflammation in situ.

    中文摘要 Ⅰ Abstract Ⅱ 致謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅸ 目 錄 第一章 緒 論 1 1.1前言 1 1.2生醫材料簡介 2 1.3研究目的 4 第二章 文 獻 回 顧 6 2.1氫氧基磷灰石 6 2.1.1氫氧基磷灰石之基本特性 6 2.1.2氫氧基磷灰石之生物相容性 11 2.2三鈣磷酸鹽之基本性質 15 2.3雙相磷酸鈣材料(HA/β-TCP)對修復骨缺損之研究 16 2.4雙相磷酸鈣材料之合成方法 19 2.5多孔性骨填充材料之研發 21 第三章 實 驗 方 法 與 步 驟 24 3.1實驗流程 24 3.2藥品 25 3.3儀器 26 3.4 HA/β-TCP檢量線 28 3.5前驅物TMA分析 29 3.6熱重熱差分析儀(TG/DTA) 30 3.7添加發泡劑製備多孔性骨填充材料 31 3.7.1起始物配比與實驗條件 31 3.7.2試片製備 33 3.8材料之分析方法 34 3.8.1X光繞射分析 34 3.8.2掃描式電子顯微鏡 34 3.8.3霍氏轉換光譜儀(FTIR)分析 34 3.8.4孔隙度分析 35 3.8.5材料表面積分析 36 3.8.6抗壓強度分析 36 3.8.7主元素與重金屬殘留分析 36 3.9細胞毒性測試 38 3.10動物皮下組織測試 40 第四章 結 果 與 討 論 41 4.1 HA/β-TCP檢量線 41 4.2 TMA分析結果 45 4.3 TG/DTA分析結果 46 4.4添加發泡劑製備多孔材料研究 47 4.4.1不同發泡劑含量結果 47 4.4.2發泡過程 52 4.4.3不同燒結溫度之結果 54 4.4.4霍氏轉換光譜儀(FTIR)分析結果 63 4.4.5鬆粉法(Loosing Powder, LP)燒結結果 65 4.4.6孔隙度量測結果 67 4.4.7表面積量測結果 69 4.4.8抗壓強度結果 71 4.4.9主元素與重金屬殘留分析結果 80 4.4.10 pH值量測結果 83 4.5細胞毒性測試 86 4.6動物實驗 89 第五章 結 論 93 參考文獻 96 圖目錄 圖2.1 CaO-P2O5 相圖 7 圖2.2 氫氧基磷灰石的結晶結構[35] 9 圖2.3 氫氧基磷灰石燒結過程中產生微裂縫[37] 10 圖2.3 HA/TCP於1150℃~1300℃煆燒持溫2hr XRD分析圖[44] 15 圖2.4 HA/β-TCP不同比例之XRD分析圖[17] 18 圖2.5 添加不同造孔劑之骨填充材料 23 圖3.1實驗流程圖 24 圖4.2 不同莫爾比例HA/β-TCP之X光繞射圖 42 圖4.3不同重量比例HA/β-TCP之X光繞射圖 43 圖4.4 不同HA/β-TCP比例之檢量線 44 圖4.5 氫氧基磷灰石之TMA圖形 45 圖4.6 HA之TG/DTA分析結果 46 圖4.7不同發泡劑含量結果(實際照片) 47 圖4.8(a) HA、K1~K5 之SEM圖 25x 48 圖4.8(a) K6~K9 之SEM圖 25x 49 圖4.8(b) 不圖蔗糖含量之SEM圖 50 圖4.8(C) Suc.: HA = 7.5:10 之SEM圖 51 圖4.9 Suc.: HA = 7.5:10 之發泡過程 53 圖4.10 HA於不同持溫溫度煆燒後之XRD分析 54 圖4.11 HA:Suc = 1:0.75不同持溫溫度煆燒後之XRD分析 55 圖4.12 HA:Suc = 1:0.75於1000 ℃經不同時間持溫 58 圖4.13 HA於不同時間持溫於1000℃ 59 圖4.14 HA:Suc=1:0.75 1000℃30min加熱後與市售產品XRD分析 59 圖4.15 HA粉體於不同溫度持溫30min後之微結構 (x5000) 61 圖4.16 HA/Suc(1/0.75)於不同溫度持溫30min後之微結構(x5000) 62 圖4.17 HA於不同持溫溫度之FTIR分析結果 64 圖4.18 HA/Suc(1/0.75)於不同持溫溫度之FTIR分析結果 64 圖4.19 鬆粉法結果之SEM分析 66 圖4.20(a) 抗壓強度 72 圖4.20(b) 抗壓強度 73 圖4.20(c) 抗壓強度 74 圖4.21(a) HA添加蔗糖後樣品之抗壓強度 77 圖4.21(b) HA添加蔗糖後樣品之抗壓強度 78 圖4.21(c) HA添加蔗糖後樣品之抗壓強度 79 圖4.22 製備材料水洗前後之XRD分析圖 85 圖4.23 24hr後L929於本研究材料上之貼附情形 87 圖4.24 24hr後L929於 Zimmer®上之貼附情形 88 圖4.25 正常皮下組織切片 91 圖4.26 植入手套之皮下組織切片 91 圖4.27植入Zimmer®之皮下組織切片 91 圖4.28 植入製備材料之皮下組織切片 92 表目錄 表1.1 生醫材料分類表---------------------------------------------------------3 表2.1 氫氧基磷灰石之晶體與物化特性------------------------------------6 表2.2 表2.2 人體骨骼與氫氧基磷灰石機械性質比較(單位: MPa )-11 表2.3 氫氧基磷灰石與人體硬組織之化學組成物比率-----------------13 表2.4 氫氧基磷灰石於人體硬組織中含量--------------------------------13 表2.5 氫氧基磷灰石之相關應用--------------------------------------------14 表2.6 不同孔徑對新骨向內生長之影響(向內生長百分比)------------21 表3.1 不同莫耳比HA/β-TCP檢量線之起始物 (單位:克)-------------28 表3.2 不同重量比HA/β-TCP檢量線之起始物 (單位:克)-------------28 表3.3 不同發泡劑含量之起始物--------------------------------------------31 表3.4 不同壓錠壓力對發泡劑影響之起始物-----------------------------31 表3.5 不同持溫溫度之起始物-----------------------------------------------32 表3.6 鬆粉法成型之起始物--------------------------------------------------32 表4.1 溫度與相轉變比例對照表--------------------------------------------56 表4.2 孔隙度--------------------------------------------------------------------67 表4.3 表面積分析結果--------------------------------------------------------70 表4.4 HA : Suc.=1: 0.75於不同持溫溫度之抗壓強度-----------------80 表4.5 不同持溫溫度條件之Ca、P含量 (unit : ppm)-------------------81 表4.6 重金屬殘留分析 (unit : ppm)----------------------------------------82 表4.7 不同實驗條件之pH值量測結果------------------------------------84 表4.8 動物實驗之血液生化結果--------------------------------------------90

    1. 闕山樟,“骨科植入物生醫材料及器材”, 科儀新知,13,1,64-71, 1991.
    2. 洪炳南, 醫學工程, 第四卷, 第一期, 23-31,1984.
    3. 林峰輝, “鈉鈣矽磷生醫骨科玻璃陶瓷之研究”, 成功大學礦冶及材料科學研究所博士論文, 1989.
    4. AH Melcher, Summary of biological considerations, J. Dent. Educ., 52, 812, 1988.
    5. 韓宗立, “生醫用氫氧基磷灰石之研究”, 成功大學礦冶及材料科學研究所碩士論文, 1986.
    6. 周更生, “生物陶瓷”, 尖端科技, 29-38, 1985.
    7. R.R. Ramachandra, H.N. Roopa, T.S. Kannan,“Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders.”, J. Mater. Sci. Mater. Med., 8, 511, 1997.
    8. H. W. Kim, “Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method.”, J. Mater. Sci. Mater. Med. 15, 1129-1134, 2004.
    9. A.C. Tas, F. Korkusuz, M. Timicin, N. Akkas, “An investigation of the chemical synthesis and high-temperature sintering behavior of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics.” , J. Mater. Sci. Mter. Med., 8, 2, 91, 1997.
    10. S.H. Rhee, J. Tanaka, “Hydroxyapatite coating on a collagen member by a miomimetic method.”, J. Amer. Ceram. Soc., 81, 11, 3029, 1998.
    11. C.M. Lopatin, V. Pizziconi, T.L. Alford, T. Laursen, “Hydroxyapatite powders and thin films prepared by a sol-gel technique.”, Thin solid Films, 326, 1-2, 227, 1998.
    12. P. Layrolle, A. Ito, T. Tateishi, “Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics.”, J. Amer. Ceram. Soc., 81, 6, 1421, 1998.
    13. A. Jillavenkatesa, R.A. Condrate, “Sol-gel processing of hydroxyapatite.”, J. Mater. Sci., 33, 16, 4111, 1998.
    14. H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, “Hydroxyapatite synthesized by a simplified hydrothermal method.”, Ceram. Int., 23, 1, 19, 1997.
    15. I. Manjubala, M. Sivakumar, “In-situ synthesis of biphasic calcium phosphate ceramics using microwave irradiation.”, Mater. Chem. Phys., 71, 272-278, 2001.
    16. U. Ripamonti, “Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models.”, Biomater., 17, 31-35, 1996.
    17. K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka, H. Kobayashi, “Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits.”, Biomater., 23, 407-412, 2002.
    18. S. H. Li, J. R. de Wijn, “Novel method to manufacture porous hydroxyapatite by dual-phase mixing.”, J. Am. Ceram. Soc., 86, 1, 65-72, 2003.
    19. B. Flautre, M. Descamps, “Porous HA ceramics for bone replacement: Role of the pores and interconnections-experimental study in the rabbit.”, J. Mater. Sci. Mter. Med., 12, 679-682, 2001.
    20. S. H. Li, J. R. de Wijn, “Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering.”, Wiley Periodicals, Inc., 2002.
    21. J. P. Gittings, I.G. Turner, A.W. Miles, “Calcium phosphate open porous scaffold bioceramics.”, Key Engin. Mater., 284-286, 349-352, 2005.
    22. M. H. Prado da Silva, A. F. Lemos, I. R. Gibson, J. M. F. Ferreira, “Porous glass reinforced hydroxyapatite materials produced with different organic additives.”, J. Non-Crys. Sol., 304, 286-292, 2002.
    23. D. C. Tancred, B. A. O. McCormack, A. C. Corr, “A synthetic bone implant macroscopically identical to cancellous bone.”, Biomater., 19, 2303-2311, 1998.
    24. Y. R. Duan, Z. R. Zhang, C. Y. Wnag, J. Y. Chen, X. D. Zhang, “Dynamic study of calcium phosphate formation on porous HA/TCP ceramics.”, J. Mater. Sci. Mter. Med., 15, 1205-1211, 2004.
    25. Y. Leng, J. Chen, S. Qu, “TEM study of calcium phosphate precipitation on HA/TCP ceramics.”, Biomater., 24, 2125-2131, 2003.
    26. Diorio, Acta Cryst., 11, 308, 1958.
    27. Suyoshi Kijima, Masayuki Tsutsumi, J. of American Ceramic Society-Uerweij, 62, 9-10, 455, 1979.
    28. Michael Jarcho, Clinical Orthopaedics and Related Research, 157, 259, 1981.
    29. K. de Groot, “Bioceramics of calcium phosphate.”, CRC Press, Inc., Florida, 1983.
    30. “Hydroxyapatite” Intermdics Orthopedics Inc., January, 1982.
    31. Newsely, J. F. Osborn,“Structure and Textural Implications of Calcium Phosphates in Ceramics”in “Medical Properties of biomaterials”Edited By G. W. Has0tings and D. F. Williams, John Wiley & Sons Ltd., New York, 457-464, 1980.
    32. Trombe, G. Montel. J. Inorg. Nucl. Chem., 40, 15, 1978.
    33. Jiming Zhou, Xingdohg Zhang et al, J. Materials Sci.: Mater. In Med. 4, 83-85, 1993.
    34. T. Negas and R. S. Roth, Journal of Research of the National Bureau of Standards-A. Physics and Chemistry, 72A, 6, 783, 1968.
    35. I. Key, R. A. Young, and A. S. Posner, Nature, 1050, 1964.
    36. E. J. Duff, A. A. Grant., Mechanical Properties of Biomaterials, Edited by G. W. Hastings and D. F. Williams, John Wiley & Sons Ltd., 465, 1980.
    37. E. D. Case, I. O. Smith, M. J. Baumann, “Microcracking and porosity in calcium phosphate and the implications for bone tissue engineering.”, Mater. Sci. Engin. A, 390, 246-254, 2005.
    38. S. F. Hulbert, J. C. Bokros, L. L. Hench, J. W. Wilson and G. Heimke, “Ceramics in clinical applications, past, present and future.”, Ceramics in clinical application, Ed. by P. Vincenzini, Elsevier Science Publishers B. V., 3-27, 1987.
    39. K. de Groot, “Medical applications of calcium phosphate bioceramics”, 日本協會學術論文誌, 99, 943-953, 1991.
    40. 李澤民,“電漿熔射生醫玻璃塗層與氫氧基磷灰石塗層特性研究”, 國立成功大學材料及工程研究所碩士論文, 1993.
    41. F. J. McClure, Fluorine, “Ash, calcium, and phosphorus in human teeth”, J. Dent. Res., 29, 315, 1950.
    42. Welch JH, Gutt W. High-temperature studies of the system calcium oxide-phosphorous pentoxide. J. Chem. Soc., 4442-4444, 1961.
    43. Sugiyama KT. Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO)4: a host to accommodate large lithophile elements in the earth’s mantle. Phys. Chem. Minerals, 15, 125-130, 1987.
    44. Hyun-Seung Ryu, Kug Sun Hong, Jung-Kun Lee, “Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility.”, Biomater., 25, 393-401, 2004.
    45. Radin SR, Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. Ⅱ. Precipitation. J Biomed. Mater. Res., 27, 35-44, 1993.
    46. Radin SR, Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. Ⅲ. Porous versus dense ceramics. J Biomed. Mater. Res., 28, 1303-1309, 1994.
    47. G. Daculsi, R. Z. LeGeros, E. Nery, K. Lynch, B. Kerebel, “Transformation of biphasic calcium phosphate ceramics in vivo: Ultrastructural and physicochemical characterization.”, J. Biomed. Mater. Res., 23, 883-894, 1989.
    48. 楊光列, “不同孔徑之多孔型氫氧磷灰石骨誘導與骨引導能力之研究”, 國防醫學院牙醫科學研究所碩士論文, 1997.
    49. R. N. Panda, M. F. Hsieh, R. J. Chung, T. S. Chin,“FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique.”, J. Phys. Chem. Sol., 64, 193-199, 2003.
    50. Rory M. Wilson, James C. Elliott, Stephanie E. P. Dowker, Luis M. Rodriguze-Lorenzo,“Rietveld refinements and spectroscopic studies of Ca-deficient apatite.”, Biomater., 26, 1317-1327, 2005.
    51. E.M. Levin, C.R. Robbins and H.F. McMurdie, 107, Fig 246, 1964.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE