研究生: |
陳瑞彬 Chen, Jui-Pin |
---|---|
論文名稱: |
N型二硫化鎢雙閘極元件之蕭特機能障分析 The Analysis of Schottky Barrier for N-Type WS2 Dual-Gate Transistors |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
葉昭輝
Yeh, Chao-Hui 連德軒 Lien, Der-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 二維材料 、二硫化鎢 、蕭特機能障 、雙閘極元件 |
外文關鍵詞: | two dimensional materials, WS2, Schottky Barrier, Dual-Gate transistors |
相關次數: | 點閱:51 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著矽半導體在短通道製程中遇到越來越多瓶頸,由於二維半導體與生
俱來的物理特性以及奈米級的厚度,他的出現替半導體的下一個世代提供
了一個答案。在本論文當中使用多層的N 型二硫化鎢作為通道材料,主
要有兩種製備方式,第一種是藉由垂直堆疊單層二硫化鎢取得三層的材
料,並且以拉曼光譜和光致螢光量測取得材料層數相關訊息,第二種是藉
由塊材撕貼取得,其比起CVD 成長具有更加穩定的品質以及更少的缺陷,
材料製備完成後,我們分別在上下閘極使用5nm Al2O3+10nm HfO2 以及
300nm SiO2 作為氧化層,並且使用低功函數的鋁作為接觸金屬,就理論來
說其可以與N 型材料形成良好的接觸,並且降低蕭特基能障的高度,在我
們的實驗當中也會使用變溫量測的方法實際萃取出蕭特機能障的數值,確
認我們的接觸品質,最後,在完成雙閘極元件後,此結構主要的特性是可
以藉由給予其中一邊的閘極偏壓進而對通道中的載子濃度進行摻雜,同時
使用另一邊的閘極調控通道中的載子,藉由此種方式可以有效調控我們元
件的臨界電壓,以利未來在邏輯電路方面可以有更多的應用。
As silicon semiconductors face increasing bottlenecks in short-channel
processes, the inherent physical properties and nanometer-scale thickness of
two-dimensional (2D) semiconductors offer a solution for the next generation
of semiconductors. In this thesis, multi-layer N-type WS2 is used as
the channel material. There are two main preparation methods: the first involves
obtaining a three-layer material by vertically stacking single layers of
WS2, with Raman spectroscopy and photoluminescence measurements providing
information related to the number of layers. The second method involves
mechanical exfoliation from bulk material, which, compared to CVD
growth, yields more stable quality and fewer defects.
After preparing the material, we use 5nm Al2O3 + 10nm HfO2 and 300nm
SiO2 as the oxide layers for the top and bottom gates, respectively. Aluminum,
with its low work function, is used as the contact metal. Theoretically,
it forms good contact with the N-type material and reduces the
Schottky barrier height. In our experiments, we will also use temperaturedependent
measurements to extract the Schottky barrier values, confirming
the quality of our contacts.
Finally, upon completing the dual-gate device, the primary feature of this
structure is the ability to dope the carrier concentration in the channel by
applying a gate voltage on one side, while using the other gate to control
the carriers in the channel. This method allows for effective modulation of
the device’s threshold voltage, facilitating more applications in future logic
circuits.
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Physical
Review, vol. 74, no. 2, p. 230, 1948.
[2] W. F. Brinkman, D. E. Haggan, and W. W. Troutman, “A history of the invention of
the transistor and where it will lead us,” IEEE journal of solid-state circuits, vol. 32,
no. 12, pp. 1858–1865, 1997.
[3] 維基百科, “摩爾定律— 維基百科, 自由的百科全書.” https://zh.wikipedia.org/
zh-tw/, 2024. Online.
[4] TSMC, “16/12 奈米製程.” https://www.tsmc.com/chinese/dedicatedFoundry/
technology/logic/l_16_12nm.
[5] online, “The challenges of process control on finfets and fd-soi.” https://
semiengineering.com/the-challenges-of-process-control-on-finfets-and-fd-soi/.
Accessed:03-April-2024.
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon
films,” science, vol. 306, no. 5696, pp. 666–669, 2004.
[7] H. Liu, A. T. Neal, and P. D. Ye, “Channel length scaling of mos2 mosfets,” ACS
nano, vol. 6, no. 10, pp. 8563–8569, 2012.
[8] Y. Xiao, M. Zhou, J. Liu, J. Xu, and L. Fu, “Phase engineering of two-dimensional
transition metal dichalcogenides,” Science China Materials, vol. 6, no. 62, pp. 759–
775, 2019.
[9] H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D.
Ye, “Switching mechanism in single-layer molybdenum disulfide transistors: An
insight into current flow across schottky barriers,” ACS nano, vol. 8, no. 1, pp. 1031–
1038, 2014.
[10] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry
of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature
chemistry, vol. 5, no. 4, pp. 263–275, 2013.
[11] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics
and optoelectronics of two-dimensional transition metal dichalcogenides,”
Nature nanotechnology, vol. 7, no. 11, pp. 699–712, 2012.
[12] D. Voiry, A. Mohite, and M. Chhowalla, “Phase engineering of transition metal
dichalcogenides,” Chemical Society Reviews, vol. 44, no. 9, pp. 2702–2712, 2015.
[13] J. A. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and
interpretation of the observed optical, electrical and structural properties,” Advances
in Physics, vol. 18, no. 73, pp. 193–335, 1969.
[14] R. Van Bremen, K. Vonk, H. J. Zandvliet, and P. Bampoulis, “Environmentally controlled
charge carrier injection mechanisms of metal/ws2 junctions,” The Journal of
Physical Chemistry Letters, vol. 10, no. 10, pp. 2578–2584, 2019.
[15] K. S. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov,
and A. K. Geim, “Two-dimensional atomic crystals,” Proceedings of the National
Academy of Sciences, vol. 102, no. 30, pp. 10451–10453, 2005.
[16] online, “以石墨烯為例, 談談化學氣相沈積法。.” https://www.sohu.com/a/
458729373_777213.
[17] X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon
and raman scattering of two-dimensional transition metal dichalcogenides from
monolayer, multilayer to bulk material,” Chemical Society Reviews, vol. 44, no. 9,
pp. 2757–2785, 2015.
[18] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of
lower symmetry and dimensionality on raman spectra in two-dimensional wse 2,”
Physical Review B, vol. 88, no. 19, p. 195313, 2013.
[19] E. R. Adler, T. D. M. Le, I. Boulares, R. Boyd, Y. He, D. Rhodes, E. Van Keuren,
P. Barbara, and S. Najmaei, “Observation of multi-phonon emission in monolayer
ws2 on various substrates,” Nanomaterials, vol. 14, no. 1, p. 37, 2023.
[20] W. Mönch, “Metal-semiconductor contacts: electronic properties,” Surface science,
vol. 299, pp. 928–944, 1994.
[21] W. Liu and S. Bai, “Thermoelectric interface materials: a perspective to the challenge
of thermoelectric power generation module,” Journal of Materiomics, vol. 5, no. 3,
pp. 321–336, 2019.
[22] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal
contacts to monolayer transition-metal dichalcogenide semiconductors,” Physical
Review X, vol. 4, no. 3, p. 031005, 2014.
[23] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park,
and W. J. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molybdenum
dichalcogenides,” ACS nano, vol. 11, no. 2, pp. 1588–1596, 2017.
[24] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, “The unusual mechanism of
partial fermi level pinning at metal–mos2 interfaces,” Nano letters, vol. 14, no. 4,
pp. 1714–1720, 2014.
[25] K. Sotthewes, R. Van Bremen, E. Dollekamp, T. Boulogne, K. Nowakowski, D. Kas,
H. J. Zandvliet, and P. Bampoulis, “Universal fermi-level pinning in transition-metal
dichalcogenides,” The Journal of Physical Chemistry C, vol. 123, no. 9, pp. 5411–
5420, 2019.
[26] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two-dimensional
semiconductors,” Nature materials, vol. 14, no. 12, pp. 1195–1205, 2015.
[27] A. Anwar, B. Nabet, J. Culp, and F. Castro, “Effects of electron confinement on
thermionic emission current in a modulation doped heterostructure,” Journal of applied
physics, vol. 85, no. 5, pp. 2663–2666, 1999.
[28] G. Yuzheng, L. Dameng, and R. John, “3d behavior of schottky barriers of 2d
transition-metal dichalcogenides,” 2015.