簡易檢索 / 詳目顯示

研究生: 陳仕恩
Chen, Shih-En
論文名稱: 絕對頻率量測與共同路徑自參考干涉儀的研究
Absolute optical frequency measurement and the study of common-path self-referencing interferometer
指導教授: 施宙聰
Shy, Jow-Tsong
口試委員: 彭錦龍
鄭王曜
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 57
中文關鍵詞: 光頻梳碘穩頻干涉儀
外文關鍵詞: frequency comb, laser stabilization, interferometer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光頻標準的建立以及絕對光頻的測量,可用來測量物理常數、檢驗基本物理定律及原子分子量子力學的理論計算等。在過去,建立光頻標準需要經由頻率鏈(frequency chain)將射頻(radio frequency)頻段的頻率標準連結至光頻的範圍,以此作為標準。但是頻率鏈的建立非常繁雜,只有少數的原子及分子的躍遷頻率被測量,所以我們將這些原子及分子的躍遷頻率作為光頻標準。直到光頻梳的發明以後,使我們可以輕易地將射頻標準連結至光頻,量測光的絕對頻率。

    實驗室中原有的鈦藍寶石(Ti:sapphire)光頻梳系統可以快速的量測可見光到近紅外光的絕對頻率。我們利用532 nm的碘穩頻Nd:YAG雷射校正光頻梳,確定光頻梳的量測值是正確的。此外,我們利用光頻梳量測碘分子穩頻雷射的穩定度,其一秒的Allan deviation優於 8.3×〖10〗^(-12)@ 。

    我們利用光頻梳量測頻率,其一是鉈(thallium)原子6P_(1/2 )→7S_(1/2)躍遷頻率的量測;另一則是,N2O中紅外譜線的量測。前者,我們將雷射掃頻,同時量測吸收強度以及雷射頻率;後者,我們將雷射頻率鎖在躍遷譜線的中心,並使用光頻梳量測絕對頻率。另外,為了得到更穩定的光頻標準,我們建立一共路徑自參考干涉儀。不幸地,這一部分我們仍未看到干涉儀的訊號。


    Setting up optical frequency standard and measuring absolute frequency can measure fundamental constants and test atomic and the quantum mechanical calculation atoms and molecules. In the past, building optical frequency standard relied on harmonic frequency chain which transfers the radio frequency standard to optical frequency regime. However, establishing a frequency chain is troublesome. Therefore, absolute frequency transition of atomic and molecular are measured to be secondary standard. Until the birth of optical frequency comb, the absolute frequency can be measured directly.

    We used Ti:sapphire frequency comb for measuring the absolute frequency in the visible and near-infrared regime. We used an iodine-stabilized Nd:YAG laser near 532 nm for checking correctness of our optical frequency comb. The stability of our optical frequency is below 8.3×〖10〗^(-12) at 1 s average time.

    In this thesis, we demonstrate two experiments. One is the absolute frequency measurement of the hyperfine splitting of the thallium atom. We scan the laser frequency near the thallium transition 6P_(1/2 )→7S_(1/2) and record its absolute frequency and absorption intensity. The other is absolute frequency measurement of N2O transition in mid-IR regime. We stabilize the laser frequency at the center frequency of the N2O transition and measure the laser frequency using our frequency comb. Also, we studied and build a common-path self-referencing interferometer. Unfortunately, we were unable to observe the signal of the offset frequency.

    第一章 導論 1-1 歷史背景 :光頻計量學 --------------------------- -------- 1 1-2 研究動機 -------------------------------------- -------- 3 1-3 論文架 構-------------------------------------- -------- 4 第二章 光頻梳 原理 2-1 鎖模雷射 -------------------------------------- -------- 5 2-2 脈衝重複率 與偏差頻-------------------------- -------- 6 2-3 自參考干涉儀 ---------------------------------- -------- 8 2-4 克爾透鏡鎖模 --- ------------------------------ -------- 10 2-5 色散補償 ------------------------------------- -------- 12 2-6 超連續光譜 ----------------------------------- -------- 15 第三章 光頻梳 3-1 飛秒雷射與脈衝重複率的控制 ------------------- -------- 17 3-2 自參考干涉儀與 偏差頻率 控制 --- ---------------- -------- 19 3-3 絕對頻率的 量測 ------------------------------- -------- 21 3-4 頻率標準 ------------------------------------- -------- 23 3-5 光頻梳特性 ----------------------------------- -------- 24 第四章 532 nm 碘分子穩頻雷射 4-1 碘分子的超精細結構 --------------------------- -------- 26 4-2 調制傳遞光譜法 ------------------------------- -------- 30 4-3 碘分子穩頻雷射 ------------------------------- -------- 35 第五章 絕對頻率量測 5-1 鉈原子 6𝑃1/2 →7𝑆1/2絕對頻率量測 ------------- ------- -- -39 5-2 N2O中紅外譜線的量測 -------------------------- -------- 41 第六章 共路徑自參考干涉儀 6-1 Michelson type interferometer ---------------- -------- 44 6-2 Quasi -common -path interferometer ------------- -------- 45 6-3 Wollaston prism based interferometer --------- -------- 46 6-4 共路徑自參考干涉儀的建立 --------------------- -------- 48 第七章 結論 與未來展望 7-1 實驗總結 -------- ------------------------------------- 52 7-2 未來展望 ------------------------------------- -------- 53 參考資料 ----------------------------------------------------------- 54

    [1]T. Udem, R. Holzwarth and T. W. Hänsch, Nature 416, 233 (2002).
    [2] K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson and G. W. Day, Appl. Phys. Lett. 22, 192 (1973).
    [3] C. R. Pollock, D. A. Jennings, F. R. Petersen, J. S. Wells, R. E. Drullinger, E. C. Beaty and K. M. Evenson, Opt. Lett. 8, 133 (1983).
    [4] A. Clairon, B. Dahmani, A. Filimon and J. Rutman, IEEE Trans. Instrum. Meas. 34, 265 (1985).
    [5] C. O. Weiss, G. Cramer, B. Lipphardt and E. Garcia, J. Quantum Electron. 24, 1970 (1998).
    [6] H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehleand and G. Zinner, Phys. Rev. Lett. 76, 18 (1996).
    [7] J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen and S. Cundy, Phys. Rev. Lett. 82, 3228 (1999).
    [8] C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, L. Julien, F. Biraben, O. Acef, J-J Zondy and A. Clairon, Phys. Rev. Lett. 82, 4960 (1999).
    [9] T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz and T. W. Hänsch, Phys. Rev. Lett. 79, 2646 (1997).
    [10] M. Kourogi, K. Nakagawa and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
    [11] J. N. Eckstein, A. I. Ferguson and T. W. Hänsch, Phys. Rev. Lett. 40, 847 (1978).
    [12] D. E. Spence, P. N. Kean and W. Sibbett, Opt. Lett. 16, 42 (1991).
    [13] M. T. Asaki, C. P. Huang, D. Garvey, J. P. Zhou, H. C. Kapteyn and M. M. Murnane, Opt. Lett. 18, 977 (1993).
    [14] U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow and T. Tschudi, Opt. Lett. 24, 411 (1999).
    [15] D. H. Sutter, G. Steinmeyer, L.Gallmann, N. Matusheck, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow and T. Tschudi, Opt. Lett. 24, 631 (1999).
    [16] T. Udem, J. Reichert, R. Holzwarth and T. W. Hänsch, Opt. Lett. 24, 881 (1999).
    [17] J. Reichert, R. Holzwarth, T. Udem and T. W. Hänsch, Opt. Commun. 172, 59 (1999).
    55
    [18] J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem and T. W. Hänsch, Phys. Rev. Lett. 84, 3232 (2000).
    [19] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. H. Hall and S. T. Cundiff, Science 288, 635 (2000).
    [20] O. Svelto, O. Svelto, O. Svelto, O. Svelto, O. Svelto, O. Svelto, O. Svelto, “Principles of Laser 4th Edition ” Kluwer Academic/Plenum Publishers (1998 ).
    [21] P. Maddaloni, P. Cancio & P. De Natale, Meas. Sci. Technol. 20, 1 (2009).
    [22] M.-H. Lee, “The improvement of femtosecond optical frequency comb”, Master Dissertation, National Tsing Hua University, Taiwan (2008).
    [23] U. Keller, W. H. Knox, G. W. 'tHooft, H. Roskos, T. K. Woodward, J. E. Cunningham, D. L. Sivco and A. Y. Cho, Advance Solid State Lasers 10, 115 (1991).
    [24] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” 2nd Edition, Wiley Interscience (2007).
    [25] S. T. Cundiff, J. Ye and J. L. Hall, Rev. of Sci. Inst. 72, 3749 (2001).
    [26] R. Szipocs and K. Ferencz, Opt. Lett. 19, 201 (1994).
    [27] T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
    [28] G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, Science 286, 1507 (1999).
    [29] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett.12, 807 (2000).
    [30] F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
    [31] J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [32] J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method”, Opt. Commun. 222, 413 (2003).
    [33] J. H. Lee et al., “Soliton self-frequency shift: experimental demonstrations and applications”, IEEE J. Quantum Electron. 14, 713 (2008).
    [34] A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening”, Opt. Lett. 33, 1723 (2008).
    [35] C. H. Hsieh, “Frequency Measurement Using Frequency Comb”, Master Dissertation, National Tsing Hua University, Taiwan (2011).
    [36] W. K. Lee, D. S. Yee, and H. S. Suh, Appl. Opt. 46, 930 (2007).
    [37] L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar and L.-S. Ma, Metrologia 38, 567 (2001).
    [38] P. Cordiale, G. Galzerano and H. Schnatz, Metrologia 37, 177 (2000).
    56
    [39] F.-L. Hong, J. Ishikawa, A. Onae and H. Matsumoto, J. Opt. Soc. Am. B 18, 1416 (2001).
    [40] H.-M. Fang, “Studies of Laser Stabilization Using Molecular Iodine”, doctoral thesis, National Chiao Tung University (2004).
    [41] A. Yokozeki and J. S. Muenter, J. Che. Phys. 72, 3796 (1980).
    [42] L. A. Hackle, et al., Phys. Rev. Lett. 35, 568 (1975).
    [43] E. Jaatinen and N. Brown, Metrologia 32, 95 (1995).
    [44] E. Jaatinen, and J.-M. Chartier, Metrologia 35, 75 (1998).
    [45] E. Jaatinen, and N. Brown, Metrologia 34, 309 (1997).
    [46] E. Jaatinen, and N. Brown, AOS News 12, 25 (1998).
    [47] E. Jaatinen, and N. Brown, Proceedings of SPIE conference 3477, 18 (1998).
    [48] J. H. Shirley, Opt. Lett. 7, 537 (1982).
    [49] J. L. Hall, L. Hollberg, T. Saer and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
    [50] F.-L. Hong, J. Ishikawa and T.-H. Yoon, Proceedings of SPIE conference 3477, 2 (1998).
    [51] F.-L. Hong, J. Ishikawa, K. Sugiyama, A. Onae, H. Matsumoto, J. Ye, and J. L. Hall, IEEE Trans. Instrum. Meas. 52, 240 (2003).
    [52] F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, IEEE Trans. Instrum. Meas. 48, 532 (1999).
    [53] K. Nyholm, M. Merimaa, T. Ahola, and A. Lassila, IEEE Trans. Instrum. Meas. 52, 284 (2003).
    [54] G. C. Bjorklund and M. D. Levenson, Phys. Rev. A 24, 166 (1981).
    [55] D. J. Hopper, Investigation of Laser Frequency Stabilisation Using Modulation Transfer Spectroscopy, Ph. D. Dissertation, Queensland University of Technology, (2008).
    [56] E. Jaatinen, D. J. Hopper and J. Back, Meas. Sci. Technol. 20, 1 (2009).
    [57] J.-Y. Tian “Absolute frequency measurements of frequency stabilized lasers”, Master Dissertation, National Tsing Hua University, Taiwan (2010).
    [58] Demtröder, “Laser Spectroscopy,” 4th Edition, Springer (2008).
    [59] T. J. Quinn, Metrologia 40, 103 (2003).
    [60] L. J. Gillespie, and L. H. D. Fraser, J. Am. Chem. Soc. 58, 2260 (1936).
    [61] T. M. Fortier, A. Bartels and S. A. Diddams, Opt. Lett. 31, 1011 (2006).
    [62] E. B. Kim, J. H. Lee, W. K. Lee and T. T. Luu, C. H. Nam, Opt. Express 18, 26365 (2010).
    [63] C. Grebing, S. Koke, B. Manschwetus and G. Steinmeyer, Appl. Phys. B 95, 81
    57
    (2009).
    [64] V. Tsatourian, H. S. Margolis, G. Marra, D. T. Reid and P. Gill, Opt. Lett. 35, 8 (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE