研究生: |
陳慶倫 Ching-Lun, Chen |
---|---|
論文名稱: |
利用貝氏信度網路來分類籃球比賽的投籃事件 Shot Event Classification of Basketball Videos Using Bayesian Belief Network |
指導教授: |
黃仲陵
Chung-Lin, Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 貝氏網路 、籃球 、投籃分類 、語意 、視訊索引 、運動節目 、支援向量機制 、視訊分類 、影像追蹤 、視訊擷取 |
外文關鍵詞: | bayesian network, video understanding, basketball, video summary, video indexing, sport program, svm, semantic, video retrieval, support vector tracking, support vector machine, video classification |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於視訊資料大量數位化,數位資料暴增,結合各種最新之壓縮及視訊處理標準,編碼及壓縮的目標不難達成,然而現階段最急於解決的是我們如何在最短的時間內找到使用者所感興趣的視訊片段,也就是說,我們要如何快速地、有效率地存取我們所要的數位資料嚴然成為一項重要的課題。因此,我們嘗試去建立一個能夠認知及分類視訊資料的系統模組,在這裡我們限定我們的應用範疇在運動節目的視訊資料,因為它們具有高重覆性的事件,高相關性的鏡頭特性,對我們在做分析時有較有利,例如籃球比賽的投籃事件大都屬於以下幾種:近距離投籃、中距離投籃、遠距離投籃和罰球。
我的論文主要是利用貝氏信度網路(Bayesian Belief Network)來當作影像處理所得到的低階特徵和高階語意之間的橋樑,經由貝氏信度網路可用來推論不易觀測到的高階語意,可用來作運動節目的語意認知及影片分類。首先這個系統會使用常見的影像處理方法,來擷取如顏色統計值、灰階值、邊緣…等,接著利用這些特徵當成SVT(Support Vector Tracking)演算法的輸入來追蹤球、投球者和籃球框,找出它們在空間和時間上彼此的相關性,當成影像處理的低階特徵,接著建構了一組貝氏信度網路來分類不同區域的投籃事件,同時也建構另外一組網路用來判斷投籃是否有得分。因此這個系統總共可以區分出八種不同的同投籃事件,包括:近距離投籃、中距離投籃、遠距離投籃和罰球,而這四種投籃又可判斷是否有得分。
The exploitation of semantic information from video is a nontrivial problem because of the large difference in representations, levels of knowledge and abstract episodes. Traditional image/video understanding, indexing is formulated in terms of low-level features describing image/video structure and intensity, while high-level knowledge such as common sense and human perceptual knowledge are encoded in abstract, non-geometric representations. In this thesis, we attempt to bridge this gap through the integration of image/video analysis algorithms with multi-level Bayesian Belief Network (BBN), and demonstrate how we can be effectively applied for fusing the evidence obtained from different video sources. Support vector tracking is applied for ball/shooter/basket tracking. SVM classifier and camera motion analysis combined with low–level feature extract algorithms are applied to extract mid-level features from the video which act as the input to the Bayesian Belief Network. We have proposed a novel video shot classification system based on low-level features extraction. Our semi-automatic semantic system is designated for the basketball game videos. Given the video shots of basketball game, our framework can identify four categories of shot event such as short shot, medium shot, long shot, free throw, and the score event. In the experiments, we demonstrate that our system may extract the low-level evidences and then interpret the high-level semantic of the video shot.
[1] M. Xu, L.Y. Duan, C.S. Xu, M.S. Kankanhalli and Q. Tian. “Event Detection in Basketball Video using Multiple Modalities”, Proc. IEEE Pacific-Rim Conference On Multimedia (PCM 2003), Singapore, December 2003.
[2] Wensheng Zhou, Asha Vellaikal, and C.-C. Jay Kuo, "Rule-based Video Classification System for Basketball Video indexing," ACM Multimedia, 2000
[3] A. Jaimes and S. F. Chang, "'Model-Based Classification of Visual Information for Content-Based Retrieval," Storage and Retrieval for Image and Video Database VII, IS & T/SPIE99, San Jose, January, 1999.
[4] D. D. Saur, Y. P. Tan, S. R. Kulkami and P. J. Ramadge, "Automated Analysis and Annotation of Basketball Video," SPIE Vol. 3022, Sep. 1997.
[5] S. Nepal, U. Srinivasan, and G. Reynolds, “Automatic detection of goal segments in basketball videos,” in Electronic Proceedings of ACM Multimedia 2001 Conference on Authoring Support, October 2001.
[6] Y.-P. Tan, et al. "Rapid Estimation of Camera Motion from Compressed Video with Application to Video Annotation," IEEE Tran. CSVT, 10(1): 133--146, 2000.
[7] L.-Y. Duan, M. Xu, and Q. Tian, "Semantic Shot Classification in Sports Video," In Proc. of SPIE Storage and Retrieval for Media Database 2003, pp. 300--313, 2003.
[8] Noboru Babaguchi, Yoshihiko Kawai, Yukinobu Yasugi, and Tadahiro Kitahashi, “Linking Live and Replay Scenes in Broadcasted Sports Video”, In Proc. of ACM Multimedia 2000.
[9] M.Bertini, A.Del Bimbo, W.Nunziati, “Common Visual Cues for Sports Highlights Detection”, Proc. on recent Advances in Visual Detection and Tracking ,ICME, April 2004.
[10] Mihai Lazarescu, Svetha Venkatesh, “Using Camera Motion To Identify Different Types of American Football Plays”. International Conference on Multimedia and Expo, 2003. ICME '03. Proceedings. 2003,Volume: 2 , 6-9 July 2003, pp181 – 184.
[11] S. Takagi, S. Hattori, K. Yokoyama, A. Kodate, and H. Tominaga, “Sports video categorizing method using camera motion parameters”, in Int. Conf. Multimedia and Expo, pp. 461-464, July 6-9, 2003.
[12] L.Y. Duan, M. Xu, T.S. Chua, Q. Tian, and C.S. Xu, “A Mid-level Representation Framework for Semantic Sports Video Analysis,” Proc. ACM Multimedia, Nov 2003.
[13] M. H. Lee, S. Nepal, and U. Srinivasan, “Edge-based semantic classification of sports video sequences”, in Int. Conf. Multimedia and Expo, pp. 157-160, July 6-9, 2003.
[14] N. Babaguchi, Y. Kawai, T. Ogura and T. Kitahashi, “Personalized Abstraction of Broadcasted American Football Video by Highlight Selection”, IEEE Trans. Multimedia, vol. 6, No. 4, Aug 2004.
[15] G. Xu, Y.-F. Ma, H.-J. Zhang, and S.Q. Yang. “A HMM based semantic analysis framework for sports game event detection”. In ICIP'03, pages 25-28, September 2003.
[16] X. Yu, Q. Tian, and K. W. Wan. “A novel ball detection framework for real soccer video”, In Proc. ICME 2003, Vol II, 265-268.
[17] X. Yu, C. Xu, Q. Tian, and H. W. Leong. “A ball tracking framework for broadcast soccer video”, In Proc. ICME 2003, Vol II, 273-276.
[18] Yu, X; Xu, C S; Leong, H W; Tian, Q; Tang, Q & Wan, K W. “Trajectory-based ball detection and tracking with applications to semantic analysis of broadcast soccer video”, Proc. of ACM MM' 03, Berkeley, pp.11-20, 2003.
[19] Shai Avidan: “Support Vector Tracking”. IEEE Trans. Pattern Anal. Mach. Intell. 26(8): 1064-1072, 2004.
[20] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer, 1995.
[21] Zhang L. Research of the cooperation between human and computer in content-based image retrieval [Ph.D. Thesis]. Beijing: Tsinghua University, 2001.
[22] Cao LH, Liu W, Li GH. “Research and implementation of an image retrieval algorithm based on multiple dominant colors”. Journal of Computer Research & Development, 1999,36(1):96~100.
[23] Wan HL, Chowdhury MU. “Image semantic classification by using SVM”. Journal of Software, 2003, 14(11).
[24] M. K. Kim, E. Kim, D. Shim, S. J, G. Kim, “An Efficient Global Motion Characterization Methods for Image Processing Application”, IEEE Trans, on Consumer Electronics, Vol. 43, No. 4, Nov. 1997.
[25] Carl M. Kadie, David Hovel, Eric Horvitz, “MSBNx:A Component-Centric Toolkit for Modeling and Inference with Bayesian Networks”, Microsoft Research Technical Report, 28 July 2001.
[26] Chung-Lin Huang, Bing-Yao Liao. “A robust scene-change detection method for video segmentation.” IEEE Transactions on Circuits and Systems for Video Technology, Vol.11, No. 12, pp. 1281 -1288, Dec. 2001.
[27] H. C. Shih and C. L. Huang, “MSN: Statistical Understanding of Broadcasted Sports Video Using Multi-level Semantic Network,” to be appear in IEEE Trans. on Broadcasting, Dec. 2005.