研究生: |
吳育銘 |
---|---|
論文名稱: |
利用耗散粒子動力學模擬π形接枝共聚物在平衡與非平衡系統下之相態衍變 Morphological Transition of π-shaped Graft Copolymer in Equilibrium and Non-equilibrium System via Dissipative Particle Dynamics Simulation |
指導教授: | 張榮語 |
口試委員: |
許嘉翔
王鎮杰 曾煥錩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 耗散粒子動力學 、高分子形態學 、接枝聚合物 |
外文關鍵詞: | Dissipative Particle Dynamics, Polymer Morphology, Graft Polymer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用耗散粒子動力學模擬π形接枝共聚物在平衡與非平衡系統下改變接枝粒子數與分子濃度。此π形接枝共聚物是由親水性,疏水性,強疏水性的三種高分子所組成。其結果發現在平衡系統下,當濃度低時,產生球狀和圓柱狀;當濃度高時,產生層板或網狀結構,在濃度100%時產生了應用性相當廣泛的孔洞結構。當加入流場後,發現流場影響了最終形態與形態的方向。其中分子622模擬出的條狀特殊結構,我們相信這結構在奈米科技上有廣泛的應用。最後將所有形態整理成相圖,使實驗人員透過調整濃度與接枝數目能得到所需要的形態。接著探討黏度與濃度的關係,其趨勢是隨著濃度增加,黏度也跟著增加,不過有些因為受到形態及分子間作用力的影響,導致黏度大小產生非預期的變化。最後我們期許這些結果在未來能用來解決在光電、生物、醫藥或奈米科技上的問題。
In this thesis, we use dissipative particle dynamics simulation to discuss the morphological transition of π-shaped graft copolymer under equilibrium and non-equilibrium system, by changing the number of particles grafted and the molecular concentration.
The π-shaped graft copolymer is composed of hydrophilic polymer, hydrophobic polymer, and strong hydrophobic polymer. Under the equilibrium system, it becomes spherical or cylindrical structure in low concentration, and network or lamellas in high concentration in this study. When the concentration is up to 100 percent, the porous structure, which is wide applicable, is observed in this study. Under the non-equilibrium system, we find that the final morphology and its direction are affected under the flow-field. Interestingly, the molecular 622 becomes a special striped morphology, and we believe this structure is useful in nanotechnology. At the end of the thesis, we make all the morphology into a phase diagram. It is easy for the experimental operator to get the desired morphology by changing the number of particles grafted or the molecular concentration. Later on, we discuss the relationship between the viscosity and concentration. The trend is that when the concentration increases, the viscosity increases, too. However, some viscosity is unexpected, due to the effect of the morphology or intermolecular forces. In the future, we hope these results can solve the problem in optoelectronics, biotechnology, medicine, or nanotechnology.
1. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 4423-4435.
2. 湖南省正陽光電股份有限公司. Available from: http://cszhengyang.51nfs.com/.
3. 陳信龍, 高分子之自組裝奈米結構. THE CHINESE CHEM. SOC., 2004. 62(4): p. 455-460.
4. Hamman, J.H., Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems. Marine Drugs, 2010. 8(4): p. 1305-1322.
5. Zilinskas, G.J., A. Soleimani, and E.R. Gillies, Poly(ester amide)-Poly(ethylene oxide) Graft Copolymers: Towards Micellar Drug Delivery Vehicles. International Journal of Polymer Science, 2012.
6. Koh, J.H., et al., Fabrication of 3D interconnected porous TiO 2 nanotubes templated by poly(vinyl chloride- g -4-vinyl pyridine) for dye-sensitized solar cells. Nanotechnology, 2011. 22(36): p. 365401.
7. 黃慶怡, 探究共聚合物系統之多元化結構衍變. 物理雙月刊, 2001. 23(4): p. 494-498.
8. Castelletto, V. and I.W. Hamley, Morphologies of block copolymer melts. Current Opinion in Solid State & Materials Science, 2004. 8(6): p. 426-438.
9. Zhao, Y., et al., Effect of molecular architecture on the morphology diversity of the multicompartment micelles: A dissipative particle dynamics simulation study. Polymer, 2008. 49(22): p. 4899-4909.
10. Huang, C.I., et al., A comparison of Y-, H-, and pi-shaped diblock copolymers via dissipative particle dynamics. Macromolecular Theory and Simulations, 2008. 17(4-5): p. 198-207.
11. Bates, M.A. and M. Walker, Dissipative particle dynamics simulation of quaternary bolaamphiphiles: multi-colour tiling in hexagonal columnar phases. Physical Chemistry Chemical Physics, 2009. 11(12): p. 1893-1900.
12. Xia, J. and C.L. Zhong, Multicompartment micelles from pi-shaped ABC block copolymers. Chinese Journal of Chemistry, 2007. 25(11): p. 1732-1738.
13. Xia, J., D. Liu, and C.L. Zhong, Multicompartment micelles and vesicles from pi-shaped ABC block copolymers: a dissipative particle dynamics study. Physical Chemistry Chemical Physics, 2007. 9(38): p. 5267-5273.
14. Taribagil, R.R., M.A. Hillmyer, and T.P. Lodge, Hydrogels from ABA and ABC Triblock Polymers. Macromolecules, 2010. 43(12): p. 5396-5404.
15. Chen, H. and E. Ruckenstein, Self-assembly of [small pi]-shaped copolymers. Soft Matter, 2012. 8(5): p. 1327-1333.
16. Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters, 1992. 19(3): p. 155-160.
17. Marcon, V., D. Fritz, and N.F.A. van der Vegt, Hierarchical modelling of polystyrene surfaces. Soft Matter, 2012. 8(20): p. 5585-5594.
18. Espanol, P. and P. Warren, Statistical-Mechanics of Dissipative Particle Dynamics. Europhysics Letters, 1995. 30(4): p. 191-196.
19. Wang, H., et al., Dissipative particle dynamics simulation study on complex structure transitions of vesicles formed by comb-like block copolymers. Polymer, 2011. 52(9): p. 2094-2101.
20. Groot, R.D. and T.J. Madden, Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics, 1998. 108(20): p. 8713-8724.
21. Khanna, K., S. Varshney, and A. Kakkar, Miktoarm star polymers: advances in synthesis, self-assembly, and applications. Polymer Chemistry, 2010. 1(8): p. 1171-1185.
22. Li, Z.B., M.A. Hillmyer, and T.P. Lodge, Morphologies of multicompartment micelles formed by ABC miktoarm star terpolymers. Langmuir, 2006. 22(22): p. 9409-9417.
23. Li, Z.B., et al., Multicompartment micelles from ABC miktoarm stars in water. Science, 2004. 306(5693): p. 98-101.
24. Liu, D.H. and C.L. Zhong, Dissipative particle dynamics simulation of microphase separation and properties of linear-dendritic diblock copolymer melts under steady shear flow. Macromolecular Rapid Communications, 2005. 26(24): p. 1960-1964.
25. Lisal, M. and J.K. Brennan, Alignment of lamellar diblock copolymer phases under shear: Insight from dissipative particle dynamics simulations. Langmuir, 2007. 23(9): p. 4809-4818.
26. He, L.L., et al., Microphase transitions of block copolymer/nanorod composites under shear flow. Soft Matter, 2011. 7(3): p. 1147-1160.
27. wikipedia. Available from: http://en.wikipedia.org/wiki/Main_Page.
28. Hoover, W.G., et al., Lennard-Jones Triple-Point Bulk and Shear Viscosities - Green-Kubo Theory, Hamiltonian-Mechanics, and Non-Equilibrium Molecular-Dynamics. Physical Review A, 1980. 22(4): p. 1690-1697.
29. Evans, D.J. and G.P. Morriss, Nonlinear-Response Theory for Steady Planar Couette-Flow. Physical Review A, 1984. 30(3): p. 1528-1530.
30. Daivis, P.J. and B.D. Todd, A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows. Journal of Chemical Physics, 2006. 124(19).
31. P. He, X. Li, M. Deng, T. Chenab , H. Liang,” Complex Micelles from the Self-assembly of Coil-Rod-Coil Amphiphilic Triblock Copolymers in Selective Solvents,” Soft Matter , 6, 1539–1546(2010).
32. S. Roy, D. Markova, A. Kumar, M. Klapper, and F. Müller-Plathe, 'Morphology of Phosphonic Acid-Functionalized Block Copolymers Studied by Dissipative Particle Dynamics', Macromolecules, 42 (2009), 841-48.
33. M. Kölbel, T. Beyersdorff, X.H. Cheng, C. Tschierske, J. Kain, and S. Diele, 'Design of Liquid Crystalline Block Molecules with Nonconventional Mesophase Morphologies: Calamitic Bolaamphiphiles with Lateral Alkyl Chains', Journal of the American Chemical Society, 123 (2001), 6809-18.
34. 鄢立傑,2010, “耗散粒子動力學模擬帶支鏈官能基團高分子與線性高分子共混系統之相態衍變”,國立清華大學化學工程學研究所碩士論文
35. 吳穎婷,2011,“耗散粒子動力學模擬具有剛性鏈段之三嵌段共聚物與現性高分子共混系統之相態變化”,國立清華大學化學工程學研究所碩士論文
36. 劉亦瑋,2012, “利用耗散粒子動力學模擬不同分子形狀的三元性分子之平衡相態衍變” ,國立清華大學化學工程學研究所碩士論文