研究生: |
劉原安 Liu, Yuan-An |
---|---|
論文名稱: |
人體腸道組織之三維影像研究 Three-Dimensional Histology of Human Intestinal Tissue Network |
指導教授: |
湯學成
Tang, Shiue-Cheng |
口試委員: |
湯學成
陳令儀 鍾元強 連吉時 潘憲棠 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 129 |
中文關鍵詞: | 腸道組織 、三維影像 、光學澄清 、組織學 |
外文關鍵詞: | Enteric nervous system, intestine |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人體腸道組織中網路系統的顯微影像在疾病的診斷上扮演著重要的角色。然而由於網路系統,如神經與血管網路,分散在三維的空間中,傳統的二維組織切片影像無法提供足夠的影像資訊。為了得到網路系統的三維影像,我們利用光學澄清技術增加組織的透光度,並利用共軛焦顯微鏡取得厚組織的三維影像。利用三維影像的資料,我們發展了定性與定量的分析方法,作為判斷腸道組織中網路系統健全與否的工具。
本研究使用的組織來自手術摘除的人體腸道組織,包括正常以及疾病的部分。利用免疫染色技術呈現組織的微結構以及網路系統。接著利用光學澄清技術將染色後的組織透明化,使得共軛焦顯微鏡可取得深度300微米的連續組織切片影像。最後利用三維影像處理軟體重組成三維影像,同時進行影像去雜訊、選取、投影以及各種定量分析。
光學澄清大幅降低了光訊號的散射,使得我們可以觀察到更深處的組織影像且維特良好的訊號與雜訊比。發揮這樣的優勢,我們分別建構腸道肌肉層與黏膜層中的三維神經與血管網路,同時觀察神經以及血管等網路組織在空間中的交互關係。除此之外,藉由相同的影像方法,我們也建構了腸道肌肉層中的三維ICC網路,並呈現他們在不同肌肉層中的形貌。
除了呈現正常組織中的三維網路,在本研究中,我們也觀察到血管與膠質細胞網路在大腸癌組織中的改變。相對於正常的大腸組織,我們觀察到形貌與定量上,如細胞數量、密度,的變化情形。
最後,本研究使用的三維影像工具可用來觀察網路系統間的空間關係,並藉此證實或推測他們之間的生理功能。本研究觀察ICC與血管網路的空間分佈,發現一部分的ICC與微血管緊密地接觸。根據空間中ICC與微血管的接觸情形,我們提出了新的ICC分類: Peri-capillary ICC.
總結來說,我們發展一套三維組織影像的方法用來觀察人體腸道中的網路組織影像。結合形貌上與定量的分析工具,這套三維組織影像的方法可以為將來腸道組織的生理以及病理研究建立良好的基礎。
Microscopic examination of intestinal neurovascular tissues is a valuable diagnostic tool to evaluate intestinal diseases. However, the standard microtome-based 2-dimensional histology provides only limited perspective of the dispersed intestinal tissue network in space. To provide a global view of the network structure, in this research we employed optical clearing to generate transparent tissue specimens for penetrative 3-dimensional (3-D) visualization of the intestinal architecture. Qualitative and quantitative analyses were developed to characterize the 3-D intestinal networks in health and disease.
In this thesis we acquired the human intestinal tissues from surgical resection for intestinal diseases. Both normal and diseased tissues were included in analysis. Nuclear and immunostaining of the tissue specimens were employed to reveal the intestinal microstructure and tissue networks. Afterward, optical clearing was used to generate transparent intestinal specimens, which led to panoramic visualization of the tissue networks up to 300 μm in depth via confocal microscopy with subcellular resolution. Spatial projection, analysis and quantitation were performed using the 3-D analytical software Avizo.
Significantly, preparation of transparent human intestinal specimens by optical clearing led to less fluorescence signal decay in confocal microscopy, achieving higher signal-to-noise ratio of the acquired images (Chapter B). The 3-D vascular and innervation patterns in association with their microstructures were constructed at both the intestinal mucosa and wall. In addition to the neurovascular structure, in colon microscopy we also acquired the 3-D structure of the interstitial cells of Cajal (ICC) to delineate their morphological patterns (Chapter C).
For the diseased tissues, in this thesis we examined the vasculature and glial network in colorectal carcinoma and differentiate their morphological and quantitative differences in comparison with those in the normal human colon mucosa (Chapter D and E).
Finally, to analyze the association between the intestinal tissue networks, we examined the association of ICC with the microvascular network in the human colon wall via high-definition 3-D microscopy. A new subclass of ICC, the peri-capillary ICC, is proposed and qualitatively and quantitatively characterized to highlight this unique cell population (Chapter F).
In sum, the microscopic and illustration methods/approaches developed in this research highlight the technical advance in 3-D gastrointestinal histology. The morphological and quantitative information of the intestinal tissue networks will lay the foundation for future study of the intestinal physiology and pathophysiology.
References
1. Calhoun BC, Gomes F, Robert ME, et al. Sampling error in the standard evaluation of endoscopic colonic biopsies. The American journal of surgical pathology. 2003;27(2):254-257.
2. Wu ML, Varga VS, Kamaras V, et al. Three-dimensional virtual microscopy of colorectal biopsies. Archives of pathology & laboratory medicine. 2005;129(4):507-510.
3. Parameswaran L, Prihoda TJ, Sharkey FE. Diagnostic efficacy of additional step-sections in colorectal biopsies originally diagnosed as normal. Human pathology. 2008;39(4):579-583.
4. Denis B, Peters C, Chapelain C, et al. Diagnostic accuracy of community pathologists in the interpretation of colorectal polyps. European journal of gastroenterology & hepatology. 2009;21(10):1153-1160.
5. Warnecke M, Engel UH, Bernstein I, et al. Biopsies of colorectal clinical polyps--emergence of diagnostic information on deeper levels. Pathology, research and practice. 2009;205(4):231-240.
6. Chopra S, Wu ML. Comprehensive evaluation of colorectal polyps in specimens from endoscopic biopsies. Advances in anatomic pathology. 2011;18(1):46-52.
7. Fu YY, Tang SC. Optical clearing facilitates integrated 3D visualization of mouse ileal microstructure and vascular network with high definition. Microvascular research. 2010;80(3):512-521.
8. Tang SC, Fu YY, Lo WF, et al. Vascular labeling of luminescent gold nanorods enables 3-D microscopy of mouse intestinal capillaries. ACS nano. 2010;4(10):6278-6284.
9. Fu YY, Lin CW, Enikolopov G, et al. Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution. Gastroenterology. 2009;137(2):453-465.
10. Fu YY, Tang SC. At the movies: 3-dimensional technology and gastrointestinal histology. Gastroenterology. 2010;139(4):1100-1105, 1105 e1101.
11. Xu X, Wang RK. Synergistic effect of hyperosmotic agents of dimethyl sulfoxide and glycerol on optical clearing of gastric tissue studied with near infrared spectroscopy. Physics in medicine and biology. 2004;49(3):457-468.
12. Parra SG, Chia TH, Zinter JP, et al. Multiphoton microscopy of cleared mouse organs. Journal of biomedical optics. 2010;15(3):036017.
13. Tuchin VV, Wang RK, Yeh AT. Optical clearing of tissues and cells. Journal of biomedical optics. 2008;13(2):021101.
14. Genina EA, Bashkatov AN, Tuchin VV. Tissue optical immersion clearing. Expert review of medical devices. 2010;7(6):825-842.
15. Vargas G, Chan EK, Barton JK, et al. Use of an agent to reduce scattering in skin. Lasers in surgery and medicine. 1999;24(2):133-141.
16. Khan MH, Choi B, Chess S, et al. Optical clearing of in vivo human skin: implications for light-based diagnostic imaging and therapeutics. Lasers in surgery and medicine. 2004;34(2):83-85.
17. Chiang AS, Lin CY, Chuang CC, et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current biology : CB. 2011;21(1):1-11.
18. Hanani M, Ermilov LG, Schmalz PF, et al. The three-dimensional structure of myenteric neurons in the guinea-pig ileum. Journal of the autonomic nervous system. 1998;71(1):1-9.
19. He CL, Burgart L, Wang L, et al. Decreased interstitial cell of cajal volume in patients with slow-transit constipation. Gastroenterology. 2000;118(1):14-21.
20. He CL, Soffer EE, Ferris CD, et al. Loss of interstitial cells of cajal and inhibitory innervation in insulin-dependent diabetes. Gastroenterology. 2001;121(2):427-434.
21. Nemeth L, Puri P. Three-dimensional morphology of c-Kit-positive cellular network and nitrergic innervation in the human gut. Archives of pathology & laboratory medicine. 2001;125(7):899-904.
22. Nemeth L, Yoneda A, Kader M, et al. Three-dimensional morphology of gut innervation in total intestinal aganglionosis using whole-mount preparation. Journal of pediatric surgery. 2001;36(2):291-295.
23. Lyford GL, He CL, Soffer E, et al. Pan-colonic decrease in interstitial cells of Cajal in patients with slow transit constipation. Gut. 2002;51(4):496-501.
24. Ermilov LG, Miller SM, Schmalz PF, et al. Morphological characteristics and immunohistochemical detection of nicotinic acetylcholine receptors on intestinofugal afferent neurones in guinea-pig colon. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2003;15(3):289-298.
25. Miller SM, Narasimhan RA, Schmalz PF, et al. Distribution of interstitial cells of Cajal and nitrergic neurons in normal and diabetic human appendix. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2008;20(4):349-357.
26. Pasricha PJ, Pehlivanov ND, Gomez G, et al. Changes in the gastric enteric nervous system and muscle: a case report on two patients with diabetic gastroparesis. BMC gastroenterology. 2008;8:21.
27. Grover M, Farrugia G, Lurken MS, et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology. 2011;140(5):1575-1585 e1578.
28. Knowles CH, De Giorgio R, Kapur RP, et al. The London Classification of gastrointestinal neuromuscular pathology: report on behalf of the Gastro 2009 International Working Group. Gut. 2010;59(7):882-887.
29. Knowles CH, De Giorgio R, Kapur RP, et al. Gastrointestinal neuromuscular pathology: guidelines for histological techniques and reporting on behalf of the Gastro 2009 International Working Group. Acta neuropathologica. 2009;118(2):271-301.
30. Watts R, Wang Y. k-space interpretation of the Rose Model: noise limitation on the detectable resolution in MRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2002;48(3):550-554.
31. Lindberg G, Tornblom H, Iwarzon M, et al. Full-thickness biopsy findings in chronic intestinal pseudo-obstruction and enteric dysmotility. Gut. 2009;58(8):1084-1090.
32. Knowles CH, Veress B, Kapur RP, et al. Quantitation of cellular components of the enteric nervous system in the normal human gastrointestinal tract--report on behalf of the Gastro 2009 International Working Group. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2011;23(2):115-124.
33. Kashyap P, Farrugia G. Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years. Gut. 2010;59(12):1716-1726.
34. Parkman HP, Camilleri M, Farrugia G, et al. Gastroparesis and functional dyspepsia: excerpts from the AGA/ANMS meeting. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2010;22(2):113-133.
35. Huizinga JD, Zarate N, Farrugia G. Physiology, injury, and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology. 2009;137(5):1548-1556.
36. Komuro T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J Physiol. 2006;576(Pt 3):653-658.
37. Lee HT, Hennig GW, Fleming NW, et al. The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine. Gastroenterology. 2007;132(5):1852-1865.
38. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996;111(2):492-515.
39. Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. American journal of physiology Gastrointestinal and liver physiology. 2001;281(3):G602-611.
40. Keef KD, Murray DC, Sanders KM, et al. Basal release of nitric oxide induces an oscillatory motor pattern in canine colon. J Physiol. 1997;499 ( Pt 3):773-786.
41. Lee HT, Hennig GW, Park KJ, et al. Heterogeneities in ICC Ca2+ activity within canine large intestine. Gastroenterology. 2009;136(7):2226-2236.
42. Rae MG, Fleming N, McGregor DB, et al. Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J Physiol. 1998;510 ( Pt 1):309-320.
43. Sanders KM, Stevens R, Burke E, et al. Slow waves actively propagate at submucosal surface of circular layer in canine colon. The American journal of physiology. 1990;259(2 Pt 1):G258-263.
44. Smith TK, Reed JB, Sanders KM. Interaction of two electrical pacemakers in muscularis of canine proximal colon. The American journal of physiology. 1987;252(3 Pt 1):C290-299.
45. Smith TK, Reed JB, Sanders KM. Origin and propagation of electrical slow waves in circular muscle of canine proximal colon. The American journal of physiology. 1987;252(2 Pt 1):C215-224.
46. Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2008;20 Suppl 1:54-63.
47. Garrity MM, Gibbons SJ, Smyrk TC, et al. Diagnostic challenges of motility disorders: optimal detection of CD117+ interstitial cells of Cajal. Histopathology. 2009;54(3):286-294.
48. Gibbons SJ, De Giorgio R, Faussone Pellegrini MS, et al. Apoptotic cell death of human interstitial cells of Cajal. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2009;21(1):85-93.
49. Ordog T. Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2008;20(1):8-18.
50. Vanderwinden JM, Rumessen JJ, Liu H, et al. Interstitial cells of Cajal in human colon and in Hirschsprung's disease. Gastroenterology. 1996;111(4):901-910.
51. Wedel T, Spiegler J, Soellner S, et al. Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterology. 2002;123(5):1459-1467.
52. Streutker CJ, Huizinga JD, Driman DK, et al. Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology. 2007;50(2):176-189.
53. Burns AJ, Herbert TM, Ward SM, et al. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell and tissue research. 1997;290(1):11-20.
54. Huizinga JD, Thuneberg L, Kluppel M, et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995;373(6512):347-349.
55. Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116(2):369-375.
56. Faussone-Pellegrini MS, Thuneberg L. Guide to the identification of interstitial cells of Cajal. Microscopy research and technique. 1999;47(4):248-266.
57. Horisawa M, Watanabe Y, Torihashi S. Distribution of c-Kit immunopositive cells in normal human colon and in Hirschsprung's disease. Journal of pediatric surgery. 1998;33(8):1209-1214.
58. Lee HT, Hennig GW, Fleming NW, et al. Septal interstitial cells of Cajal conduct pacemaker activity to excite muscle bundles in human jejunum. Gastroenterology. 2007;133(3):907-917.
59. Vanderwinden JM, Rumessen JJ. Interstitial cells of Cajal in human gut and gastrointestinal disease. Microscopy research and technique. 1999;47(5):344-360.
60. Kwon JG, Hwang SJ, Hennig GW, et al. Changes in the structure and function of ICC networks in ICC hyperplasia and gastrointestinal stromal tumors. Gastroenterology. 2009;136(2):630-639.
61. Tamada H, Komuro T. Three-dimensional demonstration of the interstitial cells of Cajal associated with the submucosal plexus in guinea-pig caecum. Cell and tissue research. 2011;344(1):183-188.
62. Liu YA, Chen Y, Chiang AS, et al. Optical clearing improves the imaging depth and signal-to-noise ratio for digital analysis and three-dimensional projection of the human enteric nervous system. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2011;23(10):e446-457.
63. Hama H, Kurokawa H, Kawano H, et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature neuroscience. 2011;14(11):1481-1488.
64. Carmeliet P. Angiogenesis in health and disease. Nature medicine. 2003;9(6):653-660.
65. Secomb TW, Alberding JP, Hsu R, et al. Angiogenesis: an adaptive dynamic biological patterning problem. PLoS computational biology. 2013;9(3):e1002983.
66. Folkman J. What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute. 1990;82(1):4-6.
67. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nature medicine. 2006;12(8):895-904.
68. Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. The New England journal of medicine. 1991;324(1):1-8.
69. Weidner N, Carroll PR, Flax J, et al. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. The American journal of pathology. 1993;143(2):401-409.
70. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. Journal of the National Cancer Institute. 2002;94(12):883-893.
71. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. The American journal of pathology. 1995;147(1):9-19.
72. Hasan J, Byers R, Jayson GC. Intra-tumoural microvessel density in human solid tumours. Br J Cancer. 2002;86(10):1566-1577.
73. Fox SB, Leek RD, Weekes MP, et al. Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol. 1995;177(3):275-283.
74. Compton CC, Fielding LP, Burgart LJ, et al. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Archives of pathology & laboratory medicine. 2000;124(7):979-994.
75. Des Guetz G, Uzzan B, Nicolas P, et al. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer. 2006;94(12):1823-1832.
76. Rajaganeshan R, Prasad R, Guillou PJ, et al. The influence of invasive growth pattern and microvessel density on prognosis in colorectal cancer and colorectal liver metastases. Br J Cancer. 2007;96(7):1112-1117.
77. Roberts N, Magee D, Song Y, et al. Toward routine use of 3D histopathology as a research tool. The American journal of pathology. 2012;180(5):1835-1842.
78. Tseng SJ, Lee YH, Chen ZH, et al. Integration of optical clearing and optical sectioning microscopy for three-dimensional imaging of natural biomaterial scaffolds in thin sections. Journal of biomedical optics. 2009;14(4):044004.
79. Liu Y-A, Chung Y-C, Pan S-T, et al. 3-D illustration of network orientations of interstitial cells of Cajal subgroups in human colon as revealed by deep-tissue imaging with optical clearing. American Journal of Physiology - Gastrointestinal and Liver Physiology. 2012;302(10):G1099-G1110.
80. Zhu D, Larin KV, Luo Q, et al. Recent progress in tissue optical clearing. Laser & photonics reviews. 2013;7(5):732-757.
81. Moy AJ, Wiersma MP, Choi B. Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain. PloS one. 2013;8(1):e53753.
82. Liu YA, Chung YC, Pan ST, et al. 3-D imaging, illustration, and quantitation of enteric glial network in transparent human colon mucosa. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2013;25(5):e324-338.
83. Wu ML, Dry SM, Lassman CR. Deeper examination of negative colorectal biopsies. American journal of clinical pathology. 2002;117(3):424-428.
84. Weinstein WM. Mucosal biopsy techniques and interaction with the pathologist. Gastrointestinal endoscopy clinics of North America. 2000;10(4):555-572, v.
85. Polydorides AD, Yantiss RK. Chasing colonic "polyps": features that predict underlying adenomas in initially nondiagnostic endoscopic biopsy specimens. American journal of clinical pathology. 2007;127(3):409-414.
86. Gershon MD. The enteric nervous system. Annual review of neuroscience. 1981;4:227-272.
87. Wedel T, Roblick U, Gleiss J, et al. Organization of the enteric nervous system in the human colon demonstrated by wholemount immunohistochemistry with special reference to the submucous plexus. Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft. 1999;181(4):327-337.
88. Gershon MD, Rothman TP. Enteric glia. Glia. 1991;4(2):195-204.
89. Ruhl A, Nasser Y, Sharkey KA. Enteric glia. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2004;16 Suppl 1:44-49.
90. Ruhl A. Glial cells in the gut. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2005;17(6):777-790.
91. Gulbransen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nature reviews Gastroenterology & hepatology. 2012;9(11):625-632.
92. De Giorgio R, Giancola F, Boschetti E, et al. Enteric glia and neuroprotection: basic and clinical aspects. American journal of physiology Gastrointestinal and liver physiology. 2012;303(8):G887-893.
93. Bach-Ngohou K, Mahe MM, Aubert P, et al. Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12,14-prostaglandin J2. J Physiol. 2010;588(Pt 14):2533-2544.
94. Neunlist M, Van Landeghem L, Mahe MM, et al. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nature reviews Gastroenterology & hepatology. 2013;10(2):90-100.
95. Bush TG, Savidge TC, Freeman TC, et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell. 1998;93(2):189-201.
96. Cornet A, Savidge TC, Cabarrocas J, et al. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease? Proc Natl Acad Sci U S A. 2001;98(23):13306-13311.
97. Savidge TC, Newman P, Pothoulakis C, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007;132(4):1344-1358.
98. Steinkamp M, Geerling I, Seufferlein T, et al. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology. 2003;124(7):1748-1757.
99. Van Landeghem L, Chevalier J, Mahe MM, et al. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. American journal of physiology Gastrointestinal and liver physiology. 2011;300(6):G976-987.
100. Flamant M, Aubert P, Rolli-Derkinderen M, et al. Enteric glia protect against Shigella flexneri invasion in intestinal epithelial cells: a role for S-nitrosoglutathione. Gut. 2011;60(4):473-484.
101. Savidge TC, Sofroniew MV, Neunlist M. Starring roles for astroglia in barrier pathologies of gut and brain. Laboratory investigation; a journal of technical methods and pathology. 2007;87(8):731-736.
102. Ben-Horin S, Chowers Y. Neuroimmunology of the gut: physiology, pathology, and pharmacology. Current opinion in pharmacology. 2008;8(4):490-495.
103. Cabarrocas J, Savidge TC, Liblau RS. Role of enteric glial cells in inflammatory bowel disease. Glia. 2003;41(1):81-93.
104. Costantini TW, Bansal V, Krzyzaniak M, et al. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. American journal of physiology Gastrointestinal and liver physiology. 2010;299(6):G1308-1318.
105. von Boyen GB, Schulte N, Pfluger C, et al. Distribution of enteric glia and GDNF during gut inflammation. BMC gastroenterology. 2011;11:3.
106. von Boyen GB, Steinkamp M, Geerling I, et al. Proinflammatory cytokines induce neurotrophic factor expression in enteric glia: a key to the regulation of epithelial apoptosis in Crohn's disease. Inflammatory bowel diseases. 2006;12(5):346-354.
107. Geboes K, Collins S. Structural abnormalities of the nervous system in Crohn's disease and ulcerative colitis. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 1998;10(3):189-202.
108. Esposito G, Cirillo C, Sarnelli G, et al. Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease. Gastroenterology. 2007;133(3):918-925.
109. Smith K. Neurogastroenterology: Improving 3D imaging of the enteric nervous system. Nature reviews Gastroenterology & hepatology. 2011;8(11):600.
110. Fu YY, Lu CH, Lin CW, et al. Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. Journal of biomedical optics. 2010;15(4):046018.
111. Fu YY, Peng SJ, Lin HY, et al. 3-D imaging and illustration of mouse intestinal neurovascular complex. American journal of physiology Gastrointestinal and liver physiology. 2013;304(1):G1-11.
112. Chiu YC, Hua TE, Fu YY, et al. 3-D imaging and illustration of the perfusive mouse islet sympathetic innervation and its remodelling in injury. Diabetologia. 2012;55(12):3252-3261.
113. Ferri GL, Probert L, Cocchia D, et al. Evidence for the presence of S-100 protein in the glial component of the human enteric nervous system. Nature. 1982;297(5865):409-410.
114. Hoff S, Zeller F, von Weyhern CW, et al. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. The Journal of comparative neurology. 2008;509(4):356-371.
115. Pedica F, Ligorio C, Tonelli P, et al. Lymphangiogenesis in Crohn's disease: an immunohistochemical study using monoclonal antibody D2-40. Virchows Archiv : an international journal of pathology. 2008;452(1):57-63.
116. Neunlist M, Van Landeghem L, Bourreille A, et al. Neuro-glial crosstalk in inflammatory bowel disease. Journal of internal medicine. 2008;263(6):577-583.
117. Neunlist M, Aubert P, Bonnaud S, et al. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. American journal of physiology Gastrointestinal and liver physiology. 2007;292(1):G231-241.
118. Hirst GD, Ward SM. Interstitial cells: involvement in rhythmicity and neural control of gut smooth muscle. J Physiol. 2003;550(Pt 2):337-346.
119. Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307-343.
120. Huizinga JD, Lammers WJ. Gut peristalsis is governed by a multitude of cooperating mechanisms. American journal of physiology Gastrointestinal and liver physiology. 2009;296(1):G1-8.
121. Ward SM. Interstitial cells of Cajal in enteric neurotransmission. Gut. 2000;47 Suppl 4:iv40-43; discussion iv52.
122. Klein S, Seidler B, Kettenberger A, et al. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun. 2013;4:1630.
123. Duthie HL. Electrical activity of gastrointestinal smooth muscle. Gut. 1974;15(8):669-681.
124. Waterfall WE, Duthie HL, Brown BH. The electrical and motor actions of gastrointestinal hormones on the duodenum in man. Gut. 1973;14(9):689-696.
125. Patterson LM, Zheng H, Ward SM, et al. Immunohistochemical identification of cholecystokinin A receptors on interstitial cells of Cajal, smooth muscle, and enteric neurons in rat pylorus. Cell and tissue research. 2001;305(1):11-23.
126. Glatzle J, Sternini C, Robin C, et al. Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology. 2002;123(1):217-226.
127. Liu M, Geddis MS, Wen Y, et al. Expression and function of 5-HT4 receptors in the mouse enteric nervous system. American journal of physiology Gastrointestinal and liver physiology. 2005;289(6):G1148-1163.
128. Wouters MM, Farrugia G, Schemann M. 5-HT receptors on interstitial cells of Cajal, smooth muscle and enteric nerves. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2007;19 Suppl 2:5-12.
129. Ward SM, Burns AJ, Torihashi S, et al. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994;480 ( Pt 1):91-97.
130. Ward SM, Burns AJ, Torihashi S, et al. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. The American journal of physiology. 1995;269(6 Pt 1):C1577-1585.
131. Wouters MM, Gibbons SJ, Roeder JL, et al. Exogenous serotonin regulates proliferation of interstitial cells of Cajal in mouse jejunum through 5-HT2B receptors. Gastroenterology. 2007;133(3):897-906.
132. Tharayil VS, Wouters MM, Stanich JE, et al. Lack of serotonin 5-HT2B receptor alters proliferation and network volume of interstitial cells of Cajal in vivo. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2010;22(4):462-469, e109-410.
133. Horvath VJ, Vittal H, Ordog T. Reduced insulin and IGF-I signaling, not hyperglycemia, underlies the diabetes-associated depletion of interstitial cells of Cajal in the murine stomach. Diabetes. 2005;54(5):1528-1533.
134. Forster J, Damjanov I, Lin Z, et al. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract. 2005;9(1):102-108.
135. Kindblom LG, Remotti HE, Aldenborg F, et al. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. The American journal of pathology. 1998;152(5):1259-1269.
136. Miettinen M, Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Archives of pathology & laboratory medicine. 2006;130(10):1466-1478.
137. Hua TE, Yang TL, Yang WC, et al. 3-D neurohistology of transparent tongue in health and injury with optical clearing. Frontiers in neuroanatomy. 2013;7:36.
138. Liu YA, Pan ST, Hou YC, et al. 3-D visualization and quantitation of microvessels in transparent human colorectal carcinoma [corrected]. PloS one. 2013;8(11):e81857.
139. Sanders KM, Ordog T, Koh SD, et al. Development and plasticity of interstitial cells of Cajal. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 1999;11(5):311-338.
140. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes care. 1996;19(3):257-267.
141. Feihl F, Liaudet L, Levy BI, et al. Hypertension and microvascular remodelling. Cardiovascular research. 2008;78(2):274-285.
142. Chung K, Deisseroth K. CLARITY for mapping the nervous system. Nature methods. 2013;10(6):508-513.
143. Erturk A, Becker K, Jahrling N, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nature protocols. 2012;7(11):1983-1995.
144. Juang JH, Peng SJ, Kuo CH, et al. Three-dimensional islet graft histology: panoramic imaging of neural plasticity in sympathetic reinnervation of transplanted islets under the kidney capsule. American journal of physiology Endocrinology and metabolism. 2014;306(5):E559-570.