研究生: |
黃子芸 Huang, Tzu-Yun |
---|---|
論文名稱: |
混合啟發式演算法求解非等效平行機台排程之研究 A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem |
指導教授: |
林東盈
Lin, Dung-Ying |
口試委員: |
王逸琳
Wang, I-Lin 陳正杰 Chen, Cheng-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 非等效平行機台排程問題 、模擬退火法 、變鄰域下降法 、生產排程 、整數規劃 |
外文關鍵詞: | variable neighborhood descent |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非等效平行機台問題旨在多部功能相似機台,可同時進行加工且不會互相影響,而不同機台的加工效率不盡相同。針對此問題實務上多以人工進行排程,但需要考量的限制及條件繁複,再加上急/插單等突發狀況,人工作業勢難以應付。有鑑於此,本篇研究在考量諸多實務限制條件下,建構一個以模擬退火法(Simulated Annealing)為基礎,結合變鄰域下降法(Variable Neighborhood Descent )之啟發式演算法,針對排程問題,以最小化最晚完工時間(Minimum Makespan)以及符合Burn-In機台加工比例為目標,期能找出符合實務需求之優化排程,研究中考量之限制條件包括每日工時上限、機台可行性、設置時間、Burn In級距限制等。實證結果表明,本研究所提出的方法能解決商業求解軟體無法在短時間內求解之中大型規模問題,且能透過調整參數的方式,適應不同的生產條件,並在有限的時間內求得優化解。
The unrelated parallel machine scheduling problem aims to assign jobs to independent machines with sequence-dependent setup times so that the makespan is minimized. When many practical considerations are introduced, solving the resulting problem is challenging, especially when problems of realistic sizes are of interest. In this study, in addition to the conventional objective of minimizing the makespan, we further consider the burn-in (B/I) procedure that is required in practice; we need to ensure that the scheduling results satisfy the B/I ratio constrained by the equipment. To solve the resulting complicated problem, we propose a population-based simulated annealing algorithm embedded with a variable neighborhood descent technique. Empirical results show that the proposed solution strategy outperforms a commonly used commercial optimization package. It can find the optimal solution for small problem instances and is scalable to solve problem instances of realistic sizes in a limited time.
1.Afzalirad, M., & Rezaeian, J. (2016). Resource-constrained unrelated parallel machine scheduling problem with sequence dependent setup times, precedence constraints and machine eligibility restrictions. Computers & Industrial Engineering, 98, 40-52. doi:10.1016/j.cie.2016.05.020
2.Al-Harkan, I. M., & Qamhan, A. A. (2019). Optimize Unrelated Parallel Machines Scheduling Problems With Multiple Limited Additional Resources, Sequence-Dependent Setup Times and Release Date Constraints. Ieee Access, 7, 171533-171547. doi:10.1109/Access.2019.2955975
3.Bai, D. Y., Zhang, Z. H., & Zhang, Q. (2016). Flexible open shop scheduling problem to minimize makespan. Computers & Operations Reearch, 67, 207-215. doi:10.1016/j.cor.2015.10.012
4.Che, A., Wu, X. Q., Peng, J., & Yan, P. Y. (2017). Energy-efficient bi-objective single-machine scheduling with power-down mechanism. Computers & Operations Research, 85, 172-183. doi:10.1016/j.cor.2017.04.004
5.Cheng, C. Y., & Huang, L. W. (2017). Minimizing total earliness and tardiness through unrelated parallel machine scheduling using distributed release time control. Journal of Manufacturing Systems, 42, 1-10. doi:10.1016/j.jmsy.2016.10.005
6.Ciro, G. C., Dugardin, F., Yalaoui, F., & Kelly, R. (2016). Open shop scheduling problem with a multi-skills resource constraint: a genetic algorithm and an ant colony optimisation approach. International Journal of Production Research, 54(16), 4854-4881. doi:10.1080/00207543.2015.1126371
7.Costa, A., Cappadonna, F. A., & Fichera, S. (2017). A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem. Journal of Intelligent Manufacturing, 28(6), 1269-1283. doi:10.1007/s10845-015-1049-1
8.Cota, L. P., Haddad, M. N., Souza, M. J. F., & Coelho, V. N. (2014). AIRP: A heuristic algorithm for solving the unrelated parallel machine scheduling problem. 2014 Ieee Congress on Evolutionary Computation (Cec), 1855-1862. Retrieved from <Go to ISI>://WOS:000356684602070
9.Davari, M., Ranjbar, M., De Causmaecker, P., & Leus, R. (2020). Minimizing makespan on a single machine with release dates and inventory constraints. European Journal of Operational Research, 286(1), 115-128. doi:10.1016/j.ejor.2020.03.029
10.Ding, H. J., & Gu, X. S. (2020). Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem. Computers & Operations Research, 121, 15. doi:10.1016/j.cor.2020.104951
11.Fleszar, K., Charalambous, C., & Hindi, K. S. (2012). A variable neighborhood descent heuristic for the problem of makespan minimisation on unrelated parallel machines with setup times. Journal of Intelligent Manufacturing, 23(5), 1949-1958. doi:10.1007/s10845-011-0522-8
12.Fleszar, K., & Hindi, K. S. (2018). Algorithms for the unrelated parallel machine scheduling problem with a resource constraint. European Journal of Operational Research, 271(3), 839-848. doi:10.1016/j.ejor.2018.05.056
13.Fleszar, Krzysztof, Charalambous, Christoforos, & Hindi, Khalil S. (2011). A variable neighborhood descent heuristic for the problem of makespan minimisation on unrelated parallel machines with setup times. Journal of Intelligent Manufacturing, 23(5), 1949-1958. doi:10.1007/s10845-011-0522-8
14.Fridman, I., Pesch, E., & Shafransky, Y. (2020). Minimizing maximum cost for a single machine under uncertainty of processing times. European Journal of Operational Research, 286(2), 444-457. doi:10.1016/j.ejor.2020.03.052
15.Hansen, P., Mladenovic, N., & Perez-Britos, D. (2001). Variable neighborhood decomposition search. Journal of Heuristics, 7(4), 335-350. doi:10.1023/a:1011336210885
16.Holland, John H. (1975). Adaptation in natural and artificial systems. an introductory analysis with applications to biology, control and artificial intelligence. anas.
17.Hosseinabadi, A. A. R., Vahidi, J., Saemi, B., Sangaiah, A. K., & Elhoseny, M. (2019). Extended Genetic Algorithm for solving open-shop scheduling problem. Soft Computing, 23(13), 5099-5116. doi:10.1007/s00500-018-3177-y
18.Joo, C. M., & Kim, B. S. (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time and production availability. Computers & Industrial Engineering, 85, 102-109. doi:10.1016/j.cie.2015.02.029
19.Jouhari, H., Lei, D. M., Al-qaness, M. A. A., Abd Elaziz, M., Ewees, A. A., & Farouk, O. (2019). Sine-Cosine Algorithm to Enhance Simulated Annealing for Unrelated Parallel Machine Scheduling with Setup Times. Mathematics, 7(11), 18. doi:10.3390/math7111120
20.Karp, Richard M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations (pp. 85-103): Springer.
21.Kim, J. G., Song, S., & Jeong, B. (2020). Minimising total tardiness for the identical parallel machine scheduling problem with splitting jobs and sequence-dependent setup times. International Journal of Production Research, 58(6), 1628-1643. doi:10.1080/00207543.2019.1672900
22.Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:DOI 10.1126/science.220.4598.671
23.Komaki, G. M., Teymourian, E., & Kayvanfar, V. (2016). Minimising makespan in the two-stage assembly hybrid flow shop scheduling problem using artificial immune systems. International Journal of Production Research, 54(4), 963-983. doi:10.1080/00207543.2015.1035815
24.Kundakci, N., & Kulak, O. (2016). Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Computers & Industrial Engineering, 96, 31-51. doi:10.1016/j.cie.2016.03.011
25.Li, X. Y., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. International Journal of Production Economics, 174, 93-110. doi:10.1016/j.ijpe.2016.01.016
26.Lin, S. W., & Ying, K. C. (2017). Uniform Parallel-Machine Scheduling for Minimizing Total Resource Consumption With a Bounded Makespan. Ieee Access, 5, 15791-15799. doi:10.1109/access.2017.2735538
27.Marinho Diana, Rodney Oliveira, & de Souza, Sérgio Ricardo. (2020). Analysis of variable neighborhood descent as a local search operator for total weighted tardiness problem on unrelated parallel machines. Computers & Operations Research, 117. doi:10.1016/j.cor.2020.104886
28.Metropolis, Nicholas, Rosenbluth, Arianna W., Rosenbluth, Marshall N., Teller, Augusta H., & Teller, Edward. (1953). Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087-1092. doi:10.1063/1.1699114
29.Mir, M. S. S., & Rezaeian, J. (2016). A robust hybrid approach based on particle swarm optimization and genetic algorithm to minimize the total machine load on unrelated parallel machines. Applied Soft Computing, 41, 488-504. doi:10.1016/j.asoc.2015.12.035
30.Ruiz, R., & Stutzle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009
31.Santos, H. G., Toffolo, T. A. M., Silva, Cltf, & Vanden Berghe, G.(2019). Analysis of stochastic local search methods for the unrelated parallel machine scheduling problem. International Transactions in Operational Research, 26(2), 707-724. doi:10.1111/itor.12316
32.Soares, L. C. R., & Carvalho, M. A. M. (2020). Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints. European Journal of Operational Research, 285(3), 955-964. doi:10.1016/j.ejor.2020.02.047
33.Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operational Research, 211(3), 612-622. doi:10.1016/j.ejor.2011.01.011
34.Wang, I. L., Yang, T. H., & Chang, Y. B. (2012). Scheduling two-stage hybrid flow shops with parallel batch, release time, and machine eligibility constraints. Journal of Intelligent Manufacturing, 23(6), 2271-2280. doi:10.1007/s10845-011-0571-z
35.Wang, X. M., Li, Z. T., Chen, Q. X., & Mao, N. (2020). Meta-heuristics for unrelated parallel machines scheduling with random rework to minimize expected total weighted tardiness. Computers & Industrial Engineering, 145. doi:UNSP 10650510.1016/j.cie.2020.106505
36.Ying, K. C., & Lin, S. W. (2017). Minimizing Makespan in Distributed Blocking Flowshops Using Hybrid Iterated Greedy Algorithms. Ieee Access, 5, 15694-15705. doi:10.1109/access.2017.2732738
37.Yu, C. L., Semeraro, Q., & Matta, A. (2018). A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility. Computers & Operations Research, 100, 211-229. doi:10.1016/j.cor.2018.07.025