簡易檢索 / 詳目顯示

研究生: 蔡嘉緯
Tsai, Chia-Wei
論文名稱: 利用水熱法製備鈦酸鹽奈米管應用於水體環境中銅離子及雙酚A共處理研究
Coupled removal of bisphenol A and Copper ion by one-dimensional titanate nanotubes fabricated by hydrothermal methods
指導教授: 董瑞安
Doong, Ruey-an
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 206
中文關鍵詞: 一維鈦酸鹽奈米材料鹼性水熱法吸附光催化銅離子雙酚A
外文關鍵詞: One-dimensional nanostructured materials, Alkaline hydrothermal, Adsorption, Photocatalytic, Copper ion, Bisphenol A
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 內分泌干擾物和製藥保健產品為典型的新興污染物,此類物質在極低濃度長期存在人體或生物體內時,可模擬天然荷爾蒙的功能,進而抑制內分泌系統或誘導造成內分泌系統失調,造成人體及生態環境的影響。因此,由環境永續與綠色科學的精神來看,開發高效能的先進光觸媒材料,來降解環境中對人體健康及生態環境潛在威脅的化學物質是相當重要的工作。利用水熱法合成之一維鈦酸鹽奈米材料具有相當高的潛力能廣泛的應用在能源和環境材料上。在本研究利用市售二氧化鈦在水熱環境中製備一維鈦酸鹽耐米管並進行後續鍛燒處理以強化光催化能力,以瞭解共處理重金屬(銅)及內分泌干擾物質(雙酚A)的可能性,同時瞭解環境參數包括pH、溫度、離子強度及濃度對處理效能的影響。使用商售之ST-01 (ISK) 二氧化鈦粉末做為初始材料,加入10 M氫氧化鈉水溶液中,在壓力釜系統下,調控水熱溫度在攝氏150度加熱24小時,即可成功製備具有管狀結構之一維鈦酸鹽奈米材料 (TNT)。掃描式及穿透式電子顯微鏡分析結果顯示,一維鈦酸鹽奈米材料的直徑介於7-10 nm,長度則在數百nm間,經在空氣下鍛燒4小時後,TNT在400□C會開始轉換成銳鈦礦TiO2,表面積則由最初的420 m2/g下降到鍛燒200-600□C後的43-396 m2/g。TNT對銅離子有相當好的吸附能力。研究結果顯示,鈦酸鹽奈米管材料吸附銅離子之最大飽和吸附量為160 ± 11 mg/g,而不同鍛燒溫度的TNT材料對重金屬能有不錯的吸附能力,但隨著鍛燒的溫度增高,其最大飽和吸附量也隨之降低至35-129 mg/g。另外,熱力學之結果顯示利用鈦酸鹽奈米管材料吸附銅離子為放熱反應,其最大飽和吸附量隨pH降低、離子強度增加及反應溫度增加時,而隨之減少。當水體環境中同時存在銅與雙酚A時,利用鍛燒溫度為500oC鍛燒處理之TNT(TNT_500),在365 nm紫外光照環境下光催化雙酚A,反應速率高達0.33 min-1,高於商用P25二氧化鈦粉末6.7倍。而不同pH(2.9-8.5)對於TNT_500光催化雙酚A之反應速率,隨著pH增加而增加,其反應速率介於0.4±0.1×10-2到0.47±0.02 min-1。本研究結果顯示,利用鹼性水熱法所配製的鈦酸鹽奈米材料結構,可藉由鍛燒處理,產生二氧化鈦顆粒,但仍保有管狀結構與高比表面積,適合作為光催化材料,並可進行環境中混合污染物的共處理。


    Endocrine disrupting chemicals (EDCs) and heavy metals are typical emerging pollutants. EDCs can cause the disorder of endocrine systems in biological bodies, which metal ions are poison chemicals to human health. From the environmental sustainability and green chemistry points of view, the development of a high efficient advanced photocatalyst that can remove emerging pollutants and metal ion in the environment is of great important. One-dimensional titanate nanobutes (TNTs) are promising materials for energy and environmental applications. However, the simultaneous removal of bisphenol A and copper ion by TNT are raely reported. In this study, the TNTs were originally obtained from ST-01 TiO2 at hydrothermal temperature of 150 oC for 1 d and then post heat-treatment at 200–600 °C in air for 4 h. The TNTs materials were characterized using SEM, TEM, BET surface area, XRD, UV-Vis, and XAS analyzer. The adsorption of copper ion onto as-synthesized and calcined TNTs was studied. The effects of copper ion concentration, pH value, ionic strength and temperature on adsorption of copper ion by TNTs were also evaluated. Results showed that the fabricated TNTs is a multi-layered tubular structures with diameters of 7-10 nm. The specific surface area of TNTs decreased with the increase in calcination temperature, presumably due to the collapse of tubular structures and formation of anatase TiO2 nanoparticles. The as-synthesized and calcined TNTs have good capacity for Cu(II) adsorption. The calculated maximum Langmurian adsorption capabilities (qm) were 160 ± 11 mg/g for as-synthesized TNTs, 129 ± 6 mg/g for TNT_200, 117 ± 6 mg/g for TNT_300, 105 ± 4 mg/g for TNT_400, 54 mg/g for TNT_500 and 35 mg/g for TNT_600. The adsorption kinetics was evaluated by the pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The pseudo-second-order model fitted the experimental results quite well, and intraparticle diffusion was found to be not the rate limiting step. In addition, the negative value of enthalpy (ΔH) (−57.6 kJ mol−1) indicates the exothermic nature of the adsorption process, and the adsorbed amounts of copper ions onto the as-synthesized TNTs decreased with the increasing reaction temperature as well as the ionic strength. In addition, the photocatalytic activities of the catalyst obtained were evaluated by the degradation of bisphenol A in aqueous solution under UV light irradiation. The effect of environmental parameters including such concentration of bisphenol A and copper, and the pH were investigated by measurement of the rate constant for BPA degradation. Consequently, kinetic parameters were experimentally determined and a pseudo-first-order kinetic was observed. In this study, the photodegradation process of 10 mg/L BPA in the presence of copper ions by TNT_500 had higher rate constant than that in the absence of copper, which is 6.7 times higher than by Degussa P25 TiO2.

    Content Index 中文摘要 I Abstract III Content Index V Table Index VIII Figure Index XII Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Objectives 2 Chapter 2 Background and Theory 4 2-1 Toxicity and removal of copper ions 4 2-2 Bisphenol A 8 2-3 Fabrication of 1-D titanate nanomaterials 16 2-3-1 Chemical (Template-directed) synthesis 18 2-3-2 Electrochemical synthesis (Anodization of Ti) 19 2-3-3 Alkaline hydrothermal method 19 2-4 Parameters influencing the morphology of titanate nanotubes 21 2-4-1 Effect of hydrothermal temperature and reaction time 24 2-4-2 Effect of alkaline concentration 25 2-4-3 Effect of starting materials 26 2-4-4 Effects of post treatment 31 2-5 Mechanism of 1-D titanate nanotube formation 32 2-6 Titanate nanotubes as catalysts in environmental applications 32 Chapter 3 Materials and methods 32 3-1 Regents and materials 32 3-2 Experimental design 32 3-3 Fabrication of 1-D TNTs materials by hydrothermal method 32 3-4 Evaluation of adsorption isothermal by titanate nanotubes 32 3-5 Evaluation of photocatalytic activity of bisphenol A by titanate nanotube 32 3-6 Characterization 32 3-6-1 Scanning electron microscopy (SEM) 32 3-6-2 Transmission electron microscopy (TEM) 32 3-6-3 Specific surface area 32 3-6-4 X-ray powder diffraction (XRPD) 32 3-6-5 Ultraviolet-Visible (UV-Vis) spectroscopy and band gap 32 3-6-6 X-ray absorption spectroscopy (XAS) 32 3-6-7 Zeta potential (ξ) measurement. 32 3-6-8 Electron paramagnetic resonance (EPR) 32 Chapter 4 Results and discussion 32 4-1 Optimization of hydrothermal conditions 32 4-2 Characterization of titanate naotube 32 4-2-1 Morphological properties 32 4-2-2 Microtsructures of as-synthesizd TNTs 32 4-2-3 Post heat-treatment TNT (calcined TNTs) 32 4-3 Adsorption of metal ions using titanate nanotube 32 4-3-1 Effect of contact time for adsorption 32 4-3-2 Effect of calcination temperatures on adsorption 32 4-3-3 Effect of pH value on adsorption of Cu(II) 32 4-3-4 Effect of ionic strength on Cu(II) adsorption 32 4-3-5 Adsorption thermodynamics 32 4-3-6 Adsorption kinetics 32 4-3-7 Desorption and reusability 32 4-4 Photocatalysis of Bisphenol A using titanate nanotube 32 4-4-1 Photocatalytic activity of titanate nanotubes (TNTs) 32 4-4-2 Couple removal of Cu and bisphenol A with various catalysts 32 4-4-3 Effect of pH value 32 4-4-4 Effect of copper concentration on photocatalytic activity of TNTs 32 4-4-5 Effect of BPA concentration on photocatalytic activity of TNTs 32 4-4-6 Analysis of TOC and reusability 32 4-4-7 Reusability of TNTs for photodegradation 32 4-4-8 Quantum efficiency results 32 4-4-9 Electron paramagnetic resonance (EPR) results 32 Chapter 5 Conclusions 32 References 32 Appendix 32 Table Index Table 2-1. The adsorption capacities of various adsorbents towards Cu(II) adsorption under various environmental conditions. 6 Table 2-2. The physical and chemical properties of bisphenol A. 9 Table 2-3. The reaction mechanisms, advantages and disadvantages of various methods for removal of EDCs and PPCPs. 11 Table 2-4. The operational conditions and efficiency of different methods used for removal of bisphenol A in aqueous solutions. 12 Table 2-5. Photocatalytic oxidation of bisphenol A by various semiconductor photocatalyst. 15 Table 2-6. Comparisons with three main methods to prepare 1-D TiO2-derived nanomaterials. 17 Table 2-7. Effects of preparation parameters on the morphology of 1-D nanostructured titanate materials fabricated by hydrothermal method. 22 Table 2-8. Hydrothermal conditions and characteristics of products in previous studies. 27 Table 2-9. The potential applications of 1-D titanate nanomaterials by hydrothermal method. 32 Table 2-10. The photocatalysis in 1-D titanate nanomaterials by hydrothermal method. 32 Table 3-1. The characteristics of physicochemical analytical instruments used in this study. 32 Table 4-1-1. Specific surface area and pore size of TiO2-derived nanomaterials at various hydrothermal temperatures for 1d in the presence of 10 M NaOH solution. 32 Table 4-2-1. BET specific surface area and pore size of the ST-01 TiO2 and as-synthesized TNT. 32 Table 4-2-2. The BET specific surface area and pore size of 1-D TNT calcined at various temperatures ranging from 200 to 600 oC. 32 Table 4-2-3. The EDS of the as-synthesized and calcined TNTs at 200-600 □C. 32 Table 4-2-4. The bandgaps of as-synthesized and calcined TNTs at 200-600 □C derived from the UV-Vis spectroscopy. 32 Table 4-2-5. Quantity of TNTs surface functional groups with as-synthesized TNTs and TNT_500. 32 Table 4-2-6. The isoelectric points of as-synthesized and calcined TNTs at 200-600 oC. 32 Table 4-3-1. The removal efficiencies of different concentration of Cu(II) onto as-synthesized and calcined TNTs at 200-600 oC. 32 Table 4-3-2. Langmuir parameters for the adsorption of copper ions by difference TNTs materials at pH 5.0±0.1 and at 25 °C. 32 Table 4-3-3. Adsorption capacity of copper ions by various adsorbents. 32 Table 4-3-4. Freundlich parameters for the adsorption of copper ions onto difference TNTs materials at pH 5.0±0.1 and at 25 °C. 32 Table 4-3-5. The removal efficiency of copper ion onto as-synthesized TNTs at various pH values. 32 Table 4-3-6. Langmuir and Freundlich parameters for the adsorption of copper ions at various pH ranging from 2.8 to 6.2. 32 Table 4-3-7. The removal efficiency of copper ion onto as-synthesized TNTs at various ionic strength ranging from 0.01 to 0.1 M. 32 Table 4-3-8. Langmuir and Freundlich isotherm parameters for adsorption of copper ions onto 1-D as-synthesized TNTs at various ionic strengths ranging from 0.01 M to 0.1 M. 32 Table 4-3-9. The removal efficiency of copper ion onto as-synthesized TNTs at various temperatures ranging from 15 to 60 oC. 32 Table 4-3-10. Langmuir isotherm constants and correlation coefficients for the adsorption of copper ions at various temperatures ranging from 15 to 60 oC. 32 Table 4-3-11. Thermodynamic parameters for the adsorption of copper ions by as-synthesized TNTs at pH 5.0±0.1. 32 Table 4-3-12. The kinetic parameters for copper ions adsorption at various initial copper ions concentrations. 32 Table 4-3-13. The kinetic parameters for copper ions adsorption at various reaction temperature. 32 Table 4-3-14. The desorption efficiency of adsorbed Cu(II) onto as-synthesized TNTs as HCl and HNO3 was used. 32 Table 4-4-1. The specific surface area and pseudo-first-order rate constants for BPA photodegradation with different catalysts. 32 Table 4-4-2. The kobs for BPA photodegradation by different photocatalysts in the presence of absence of 1 mg/L Cu(II) under illumination of UV light at 365 nm at pH 6.5. 32 Table 4-4-3. The pseudo-first order rate constants (kobs) for BPA degradation and adsorption efficiency of Cu(II) at various pH in the presence of 20 mg/L Cu(II) under illumination of UV light at 365 nm. 32 Table 4-4-4. The pseudo-first-order rate constants (kobs) for BPA and adsorption efficiency of Cu(II) at various copper concentrations ranging from 1 to 50 mg/L under illumination of UV light at 365 nm. 32 Table 4-4-5. Parameters for Langmuir-Hsinshelwood kinetics of photodegradation of BPA by TNT_500 in the presence of 365 nm UV light. 32 Table 4-4-6. Rate constants (k, min-1), rate (r, μM min-1) and quantum efficiency (Φe), and Φ365 (μM /einstein) of BPA containing P25, TNT_500 and TNT_500 with 20mg/L Cu. 32 Figure Index Figure 2-1. Chemical structure of bisphenol A. 9 Figure 2-2. Simplified milestones of the development and application of 1-D TiO2-derived nanostructured materials (Bavykin et al., 2009). 18 Figure 2-3. Five different morphologies synthesized by alkaline hydrothermal methods from TiO2. (a) Sheets, (b) spheroids, (c) rectangular-section fibers, (d) multiple-wall nanotubes, and (e) circular-section rods (Bavykin and Walsh, 2009). 20 Figure 2-4. Schematic illustration of the change in morphology of titanate nanotubes obtained from Degussa P-25 and ST-01 in 5 and 10 M NaOH at various hydrothermal temperatures ranging from 60 to 230 °C for 3 days. 25 Figure 2-5. Schematic representation of the thermal transformations pathways as a function of sodium content in titanate nanostructures (Morgado et al., 2006). 32 Figure 2-6. Schemes of three possible mechanisms for multi-walled titanate nanotubes (Bavykin et al., 2004). 32 Figure 2-7. Formation mechanism of the TiO2-derived nanotubes (Wang et al., 2002). 32 Figure 2-8. Schematic of the formation process of titanate nanosheets, nanotubes, and nanowires (Huang et al., 2009). 32 Figure 3-1. Flowchart of the fabrication 1-D titanate nanomaterials and its application. 32 Figure 3-2. Schematic diagram of the fabrication 1-D titanate nanotube. 32 Figure 3-3. Procedure of adsorption experiments by synthesized TNT. 32 Figure 3-4. Flowchart of the photocatalytic experiments by synthesized TNT. 32 Figure 4-1-1. SEM images of the morphology of 1-D titanate nanostructures fabricated from P25 TiO2 in 10 M NaOH(aq) solution at various hydrothermal temperatures for 1d. (a) 120 °C; (b) 150 °C; (c) 180 °C, and (d) 200 °C. 32 Figure 4-1-2. SEM images of the morphology of 1-D titanate nanostructures fabricated from ST-01 TiO2 in 10 M NaOH(aq) solution at various hydrothermal temperatures for 1d. (a) 120 °C; (b) 150 °C; (c), 180 °C and (d) 200 °C. 32 Figure 4-1-3. TEM images of titanate nanomaterials prepared by P25 TiO2 at (a)150 oC and (b) 200 oC, and by ST-01 TiO2 at (c)150 oC and (d) 200 oC for 1d in the 10 M NaOH solution. 32 Figure 4-1-4. Nitrogen adsorption-desorption isotherm at 77 K for titanate nano- materials from (a) P25 and (b) ST-01 at different hydrothermal temperatures of 120-200 □C for 1d in the presence of 10 M NaOH. The adsorption isotherms for the P25_120, P25_150, and P25_180 are vertically shifted 100, 400, 350 cm3 STP g-1, respectively, for clarity. The ST-01_120, ST-01_150, and ST-01_180 are vertically shifted 350, 150, 50 cm3 STP g-1, respectively, for clarity. 32 Figure 4-1-5. BJH pore size distribution for titanate nanomaterials from (a) P25 and (b)ST-01 prepared at different hydrothermal temperatures of 120-200 □C for 1d in the presence of 10 M NaOH. 32 Figure 4-2-1. SEM images of (a) ST-01 TiO2 and (b) as-synthesized TNTs obtained from ST-01 in 10 M NaOH solutions at hydrothermal temperature of 150°C for 24 h. 32 Figure 4-2-2. EDS of as-synthesized TNTs were obtained from ST-01 in 10 M NaOH solution at hydrothermal temperature of 150°C for 24 h. 32 Figure 4-2-3. (a) TEM images and (b) HRTEM images of as-synthesized TNTs were obtained from ST-01 in 10 M NaOH solutions at hydrothermal temperature of 150°C for 24 h. 32 Figure 4-2-4. Nitrogen adsorption–desorption isotherms of the ST-01 TiO2 and as-synthesized TNTs prepared in 10 M NaOH solution at hydrothermal temperature of 150°C for 24 h. Inseted is the BJH pore size distribution. 32 Figure 4-2-5. The XRD patterns of ST-01 TiO2 and as-synthesized TNT obtained from ST-01 in 10 M NaOH solutions at hydrothermal temperature of 150°C for 24 h. 32 Figure 4-2-6. The UV-Vis spectra of the ST-01 TiO2 and as-synthesized TNTs obtained from ST-01 in 10 M NaOH solutions at hydrothermal temperature of 150°C for 24 h. 32 Figure 4-2-7. SEM images of post heat treatment TNTs calcined at 200-600 □C. (a) TNT_200, (b) TNT_300, (c) TNT_400, (d) TNT_500, and (e) TNT_600. 32 Figure 4-2-8. TEM images of post heat treatment TNTs calcined at 200-600 □C. (a) TNT_200, (b) TNT_300, (c) TNT_400, (d) TNT_500, and (e) TNT_600. 32 Figure 4-2-9. HRTEM images of post heat treatment TNTs. (a) TNT_400, (b) TNT_500, (c) TNT_600. 32 Figure 4-2-10. Nitrogen adsorption–desorption isotherms of TNTs after calcination at various temperature.. 32 Figure 4-2-11. The BJH pore size distribution of post heat treatment TNTs. The pore distribution for TNT_200, TNT_300, TNT_400, TNT_500, and TNT_600 are vertically shifted 0.1, 0.2, 0.3, 0.4, and 0.5 cm3 min g-1, respectively, for clarity. 32 Figure 4-2-12. Textural parameters of specific surface area and pore size of post heat treatment TNTs ranging from 200 to 600 □C. 32 Figure 4-2-13. The XRD patterns of the as-synthesized and calcined TNTs at various temperatures ranging from 200 to 600 □C.. 32 Figure 4-2-14. The UV-Vis spectra of the as-synthesized and post heat-treated TNTs. The TNTs were fabricated at 150 oC for 24 h in the presence of 10 M NaOH. The calcination temperatures were in the range 200-600 oC 32 Figure 4-2-15 The FTIR spectra of the as-synthesized and post heat-treated TNTs. The TNTs were fabricated at 150 oC for 24 h in the presence of 10 M NaOH. The calcination temperatures were in the range 200-600 oC 32 Figure 4-2-16. Ti K-edge XANES spectra of as-synthesized TNTs and TNT_500. 32 Figure 4-2-17. Pre-edge spectra of Ti K-edge XANES for as-synthesized TNTs and TNT_500. 32 Figure 4-2-18. Zeta potential of the as-synthesized and calcined TNTs at various pH values. 32 Figure 4-2-19. The isoelectric points (IEPs) of TNTs nanomaterials as a function of calcination temperatures ranging from 200 to 600 oC. 32 Figure 4-3-1. The adsorption of metal ions for as-synthesized TNTs as a function of time. The initial Cu(II) concentrations were in the range 50 mg/L, and the pH value and temperature were controlled at 5.0 and 25oC, respectively. 32 Figure 4-3-2. Adsorption isotherms of Cu(II) by different 1-D TNTs at 25 oC. The TNTs used included as-synthesized TNTs, TNT_200, TNT_300, TNT_400, TNT_500 and TNT_600. The pH value was controlled at 5.0±0.1 in 10 mM acetic acid buffer solution. 32 Figure 4-3-3. Concentration diagram of copper species in aqueous solution. Copper concentration: 10−4 M (Wang and Qin, 2005) 32 Figure 4-3-4. Effect of pH on adsorption of copper ions onto as-synthesized TNTs at 25 oC. The pHs were in the range 2.8-6.2. 32 Figure 4-3-5. Effect of ionic strength on adsorption of copper ions onto as-synthesized TNTs at 25 °C. The pH value was controlled at 5.0±0.1 and the ionic strengths were in the range 0.01 to 0.1 M using NaClO4 as the electrolyte. 32 Figure 4-3-6. The qm and KF values of the Langmuir and Freundlich at various ionic strengths ranging from 0.01 to 0.1 M. The pH value and temperature were controlled at 5.0±0.1 and 25 °C. 32 Figure 4-3-7. Adsorption isotherms of Cu(II) onto as-synthesized TNTs at various temperatures and at pH 5.0±0.1. 32 Figure 4-3-8. Plot of the Langmuir isotherm constant (ln b) vs. temperature (1/T). 32 Figure 4-3-9. The adsorption of metal ions for as-synthesized TNTs as a function of time. The initial Cu(II) concentrations were in the range 50-200 mg/L, and the pH value and temperature were controlled at 5.0 and 25 oC, respectively. 32 Figure 4-3-10. The adsorption of metal ions for as-synthesized TNTs as a function of time. The reaction temperature were in the range 15-60 oC, and the pH value and initial Cu(II) concentrations were controlled at 5.0 and 50 mg/L, respectively. 32 Figure 4-3-11. Linear plot by pseudo-first-order model for adsorption of copper ions concentrations onto as-synthesized TNTs at different concentrations from 50 to 200 mg/L. (pH = 5.0±0.1 and T =25 oC) 32 Figure 4-3-12. Linear plot of pseudo-second-order model for adsorption of copper ions concentrations onto as-synthesized TNTs at different concentrations from 50 to 200 mg/L. (pH = 5.0±0.1 and T =25 oC) 32 Figure 4-3-13. Linear plot of intraparticle diffusion model for adsorption of copper ions concentrations onto as-synthesized TNTs at different concentrations from 50 to 200 mg/L. (pH = 5.0±0.1 and T =25oC) 32 Figure 4-3-14. Linear plot by pseudo-first-order model for adsorption of copper ions concentrations onto as-synthesized TNTs at various temperatures of 15-60 oC. (pH = 5.0±0.1 and initial concentration of Cu(II) = 100 mg/L) 32 Figure 4-3-15. Linear plot of pseudo-second-order model for adsorption of copper ions concentrations onto as-synthesized TNTs at various temperatures of 15-60 oC. (pH = 5.0±0.1 and initial concentration of Cu(II) = 100 mg/L) 32 Figure 4-3-16. Linear plot of intraparticle diffusion model for adsorption of copper ions concentrations onto as-synthesized TNTs at various temperatures of 15-60 oC. (pH = 5.0±0.1 and initial concentration of Cu(II) = 100 mg/L) 32 Figure 4-3-17. The desorption efficiency of adsorbed Cu(II) onto as-synthesized TNTs. (T=25 oC, pH=5.0±0.1 in 10 mM acetic acid buffer solution) 32 Figure 4-3-18. The performance of as-synthesized TNTs by multiple cycles of regeneration by 1 M HCl. (T=25oC, pH=5.0±0.1 in 10 mM acetic acid buffer solution) 32 Figure 4-3-19. The performance of as-synthesized TNTs by multiple cycles of regeneration by 1 M HNO3 (T=25oC, pH=5.0±0.1 in 10 mM acetic acid buffer solution). 32 Figure 4-4-1. The photodegradation of 10 mg/L BPA by the as-synthesized TNTs and commercial TiO2 (P25 and ST-01) in the presence of O2 under the UV irradiation of 365 nm (pH=6.5 and T=25oC). 32 Figure 4-4-2. Photocatalytic degradation of 10 mg/L BPA by TNTs calcined at various calcination temperatures in the presence of O2 under UV irradiation of 365 nm (pH=6.5 and T=25oC). 32 Figure 4-4-3. The linear relationship between the change in BPA concentration with time. The kobs for BPA photodegradation can be obtained from the slope of each line. 32 Figure 4-4-4. Coupled photodegradation of 10 mg/L BPA by different photocatalysts in the presence of 1 mg/L Cu(II) and O2 at pH 6.5 under UV irradiation conditions. The photocatalysts used in this study were for P25, ST-01 and TNT_500. 32 Figure 4-4-5. Linear relationship between the change in BPA concentration and irradiation time. 32 Figure 4-4-6. Effect of pH on the photodegradation of 10 mg/L BPA in the presence of 20 mg/L Cu (II) at 25oC under the illumination of UV light at 365 nm. 32 Figure 4-4-7. The linear relationship of photodegradation of 10 mg/L BPA by TNT_500 in the presence of 20 mg/L Cu (II) at 25oC under illumination of UV light at 365 nm. 32 Figure 4-4-8. The pseudo-first-order rate constant (kobs) for BPA photodegradation as a function of pH at 25oC in the presence of 20 mg/L Cu(II). 32 Figure 4-4-9. The Cu(II) species as a function of pH in the presence of 10 mg/L BPA simulated using MINTEQ program. The initial concentration of Cu(II) was 20 mg/L. 32 Figure 4-4-10. The species distribution of Bisphenol A as a function of pH ranging from 4 to 12. The distribution was calculated based on pKa1 9.6 and pKa2 10.2 of BPA (Kosky et al., 1991). 32 Figure 4-4-11. The effect of Cu concentration on photodegradation of BPA by TNT_500 under the 365 nm UV irradiation conditions. The initial concentration of BPA was 10 mg/L at pH 7 and 25oC) 32 Figure 4-4-12. The kobs for BPA photodegradation by calcined TNTs as a function of Cu(II) concentration at pH 7 and at 25□C. The initial BPA concentration and wavelength of UV llight were 10 mg/L and 365 nm, respectively. 32 Figure 4-4-13. The initial rate for BPA photodegradation as a function of initial BPA concentration at pH 7 under UV-illumination conditions. Inset is the plot of the 1/r versus 1/C by L-H mode for photodegradation of BPA with 20 mg/L Cu by TNT_500. 32 Figure 4-4-14. The photomineralization of 10 mg/L BPA by various photocatalysts irradiated with 365 nm UV light. The photocatalytic system used were Degussa P25 TiO2 in the absence of Cu(II) and TNT_500 in the presence of 20 mg/L Cu(II). 32 Figure 4-4-15. The longevity of photocatalytic degradation of 10 mg/L BPA by Degussa P25 TiO2 and TNT_500 irradiated with 365 nm UV light at pH 6.5 and at 25 ºC. 32 Figure 4-4-16. Concentration of 2-NBA as a function of time under UV irradiated at 365 nm at pH 6.5 and 25oC. 32 Figure 4-4-17. Photodegradation of BPA by P25 TiO2 and TNT_500 catalysts in the presence and absence of Cu(II) ions under UV irradiated at 365 nm. The pH and temperature used in this study were at pH 6.5 and 25oC. 32 Figure 4-4-18. The EPR signals of DMPO-HO• adduct in the presence of DMPO solution under illumination of 250 W mercury lamps. The concentration of DMPO was 4.4×10-3 M. 32 Figure 4-4-19. The EPR spectra of radicals trapped by DMPO irradiated with 250 W UV lamp for 5 min. (a) P25 TiO2 and TNT_500 in DI water, (b) P25 TiO2 and TNT_500 in the presence of bisphenol A. DMPO concentration was 4.4×10-3 M. 32 Figure 4-4-20. EPR spectra of radicals obtained from the irradiation of TNT_500 by 250 W UV lamp fro 5 min after the addition of various concentrations of Cu(II) ranging from 5-40 mg/L to BPA solutions in the presence of DMPO. 32

    References
    Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S., Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2003, 150 (8), G488-G493.
    Ajmal, M.; Rao, R. A. K.; Anwar, J. A.; Ahmad, R., Adsorption Studies on Rice Husk: Removal and Recovery of Cd (II) from Wastewater. Bioresource Technology, 2003, 86 (2), 147–149.
    Antunes, W. M.; Luna, A. S.; Henriques, C. A.; Costa, A. C. A., An Evaluation of Copper Biosorption by a Brown Seaweed under Optimized Conditions. Electronic Journal of Biotechnology, 2003, 6 (3), 174–184.
    Armstrong, A. R.; Armstrong, G.; Canales, J.; Bruce, P. G., TiO2-B nanowires. Angewandte Chemie International Edition, 2004, 43 (17), 2286-2288.
    Akita, T.; Okumura, M.; Tanaka, K.; Ohkuma, K.; Kohyama, M.; Koyanagi, T.; Date, M.; Tsubota, S.; Haruta, M., Transmission Electron Microscopy Observation of the Structure of TiO2 Nanotube and Au/TiO2 Nanotube Catalyst. Surface and Interface Analysis, 2005, 37 (2), 265-269.
    Andersen, H. R.; Hansen, M.; Kjolholt, J.; Stuer-Lauridsen, F.; Ternes, T.; Halling-Sorensen, B., Assessment of the Importance of Sorption for Steroid Estrogens Removal during Activated Sludge Treatment. Chemosphere, 2005, 61 (1), 139–146.
    Argun, M. E.; Dursun, S.; Ozdemir,C.; Karatas, M., Heavy Metal Adsorption by Modified Oak Sawdust: Thermodynamics and Kinetics. Journal of Hazardous Materials, 2007, 141 (1), 77–85.
    Aydına, H.; Bulut, Y.; Yerlikaya, C., Removal of Copper (II) from Aqueous Solution by Adsorption onto Low-cost Adsorbents. Journal of Environmental Management, 2008, 87 (1), 37–45.
    Bowen, E. J.; Harley, H.; Scott, W. D.; Watts, H. G., Rate of Photochemical Change in Solids. Journal of the Chemical Society, 1924, 125, 1218–1221.
    Braun, S. S., Maurette, M. T.; Oliveros, E., Photochemical Technology. John Wiley & Sons Inc., 1991, 153.
    Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C., The Effect of Hydrothermal Conditions on the Mesoporous Structure of TiO2 Nanotubes, Journal of Materials Chemistry, 2004, 14 (22), 3370-3377.
    Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.; Walsh, F. C., Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2 Nanotubes. Journal of Physical Chemistry B, 2005, 109 (41), 19422-19427.
    Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C., Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials, 2006, 18 (21), 2807–2824.
    Bavykin, D. V.; Walsh, F. C., Elongated Titanate Nanostructures and Their Applications. European Journal of Inorganic Chemistry, 2009, 8, 977–997.
    Chen, L. X.; Rajh, T.; Wang, Z. Y.; Thumauer, M. C., XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions. Journal of Physical Chemistry B, 1997, 101 (50), 10688-10697.
    Chen, J. P.; Wang, X. Y., Removing Copper, Zinc, and Lead Ion by Granular Activated Carbon in Pretreated Fixed-bed Columns. Separation and Purification Technology, 2000, 19 (3) 157–167.
    Caruso, R. A.; Schattka, J. H.; Greiner, A., Titanium dioxide Tubes from Sol-Gel Coating of Electrospun Polymer Fibers. Advanced Materials, 2001, 13 (20), 1577-1579.
    Chen, Q.; Du, G. H.; Zhang, S. Peng, L. M., The structure of Trititanate Nanotubes. Acta Crystallographical Section B-Structural, 2002, 58, 587-593.
    Chen, Q.; Zhou, W. Z.; Du, G. H.; Peng, L. M., Trititanate Nanotubes Made Via a Single Alkali Treatment. Advanced Materials, 2002, 14 (17), 1208-1211.
    Cao, J., Sun, J. Z., Li, H. Y., Hong, J., Wang, M., A Facile Room-Temperature Chemical Reduction Method to TiO2@CdS Core/Sheath Heterostructure Nanowires. Journal of Materials Chemistry, 2004, 14 (7), 1203-1206.
    Chiang, K.; Lim, T. M.; Tsen, L.; Lee, C. C., Photocatalytic Degradation and Mineralization of Bisphenol A by TiO2 and Platinized TiO2. Applied Catalysis A-General, 2004, 261 (2), 225–237.
    Chatterjee, D.; Dasgupta, S., Visible Light Induced Photocatalytic Degradation of Organic Compounds. Journal Photochemistry and Photobiology C-Photochemistry Reviews, 2005, 6 (2-3), 186-205.
    Chen, C. L.; Wang, X. K., Adsorption of Ni(II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2006, 45 (26), 9144-9149.
    Chen, Q.; Peng, L. M., Structure and Applications of Titanate and Related Nanostructures. International Journal of Nanotechnology, 2007, 4 (1-2), 44-65.
    Chen, X.; Mao, S. S., Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007, 107 (7), 2891-2959.
    Chang, S. M.; Lo, P. H.; Chang, C. T., Photocatalytic Behavior of TOPO-Capped TiO2 Nanocrystals for Degradation of Endocrine Disrupting Chemicals. Applied Catalysis B: Environmental, 2009, 91 (3-4), 619–627.
    Cernigoj, U.; Stangar, U. L.; Trebse, P.; Sarakha, M., Determination of Catalytic Properties of TiO2 Coatings using Aqueous Solution of Coumarin: Standardization Efforts. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201 (2-3), 142–150.
    Chen, G. C.; Shan, X. Q.; Zhou, Y. Q.; Shen, X. E.; Huang, H. L.; Khan, S. U., Adsorption Kinetics, Isotherms and Thermodynamics of Atrazine on Surface Oxidized Multiwalled Carbon Nanotubes. Journal of Hazardous Materials, 2009, 169 (1-3), 912–918.
    Dojlido, J. R.; Best, G. A., Chemistry of Water and Water Pollution. Ellis Horwood Limited, 1993.
    Dean, J. G.; Bosqui, F. L.; Lannouette, K. L., Removing Heavy-Metals from Wastewater. Environmental Science & Technology, 1997, 6 (6), 518–524.
    Donmez, G.; Aksu, Z., The Effect of Copper(II) Ions on the Growth and Bioaccumulation Properties of Some Yeast. Process Biochemistry, 1999, 35 (1-2), 135–142.
    Dastgheib, S. A.; Rockstraw, D. A., Pecan Shell Activated Carbon: Synthesis, Characterization, and Application for the Removal of Copper from Aqueous Solution. Carbon, 2001, 39 (12), 1849–1855.
    Daoud, W. A.; Pang, G. K. H., Direct Synthesis of Nanowires with Anatase and TiO2-B Structures at Near Ambient Conditions. Journal of Physical Chemistry B, 2006, 110 (51), 25746-25750.
    Doong, R. A.; Kao, I. L., Fabrication and Characterization of Nanostructured Titanate Materials by the Hydrothermal Treatment Method. Recent Patents on Nanotechnology. 2008, 2 (2), 84-102
    Demirbas, E.; Dizge, N.; Sulak, M. T.; Kobya, M., Adsorption Kinetics and Equilibrium of Copper from Aqueous Solutions Using Hazelnut Shell Activated Carbon. Chemical Engineering Journal, 2009, 148 (2-3), 480–487.
    Dong, F.; Zhao, W. R.; Wu, Z. B.; Guo, S., Band Structure and Visible Light Photocatalytic Activity of Multi-type Nitrogen Doped TiO2 Nanoparticles Prepared by Thermal Decomposition. Journal of Hazardous Materials, 2009, 162 (2-3), 763-770.
    Ekmekyapar, F.; Aslan, A.; Bayhan, Y. K.; Cakici, A., Biosorption of Copper(II) by Nonliving Lichen Biomass of Cladonia Rangiformis Hoffm. Journal of Hazardous Materials, 2006, 137 (1), 293–298.
    Elsanousi, A.; Elssfah, E. M.; Zhang, J.; Lin, J.; Song, H. S.; Tang, C. C., Hydrothermal Treatment duration Effect on the Transformation of Titanate Nanotubes into Nanoribbons. Journal of Physical Chemistry C, 2007, 111 (39), 14353-14357.
    Ertugay, N.; Bayhan, Y. K., The Removal of Copper (II) Ion by Using Mushroom Biomass (Agaricus bisporus) and Kinetic Modeling. Desalination, 2010, 255 (1-3), 137-142.
    Fukahori, S.; Ichiura, H.; Kitaoka, T.; Tanaka, H., Capturing of Bisphenol A Photodecomposition Intermediates by Composite TiO2–Zeolite Sheets. Applied Catalysis B: Environmental, 2003, 46 (3), 453–462.
    Fu, H. B.; Zhang, L. W.; Zhang, S. C.; Zhu, Y. F.; Zhao, J. C. Electron Spin Resonance Spin-Trapping Detection of Radical Intermediates in N-doped TiO2-Assisted Photodegradation of 4-Chlorophenol. Journal of Physical Chemistry B, 2006, 110 (7), 3061–3065.
    Fujishima, A.; Zhang, X. T., Titanium Dioxide Photocatalysis: Present Situation and Future Approaches. Comptes Rendus Chimie, 2006, 9 (5-6), 750-760.
    Fahim, N. F.; Sekino, T., A Novel Method for Synthesis of Titania Nanotube Powders using Rapid Breakdown Anodization. Chemistry of Materials, 2009, 21 (9), 1967–1979
    Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C., Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. Journal of Materials Research, 2001, 16 (12), 3331- 3334.
    Gupta, V. K.; Ali, I., Removal of Lead and Chromium from Wastewater using Bagasse Fly Ash– A Sugar Industry Waste. Journal of Colloid and Interface Science, 2004, 271 (2), 321–328.
    Gao, T.; Wu, O. L.; Fjellvåg, H.; Nor, P., Topological Properties of Titanate Nanotubes. Journal of Physical Chemistry C, 2008, 112 (23), 8548–8552.
    Gok, O.; Ozcan, A.; Erdem, B.; Ozcan, A. S., Prediction of the Kinetics, Equilibrium and Thermodynamic Parameters of Adsorption of Copper(II) Ions onto 8-hydroxy Quinoline Immobilized Bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317 (1-3), 174–185.
    Guo, Y.; Lee, N. H.; Oh, H. J.; Yoon, C. R.; Park, K. S.; Lee, W. H.; Li, T.; Lee, H. G.; Lee, K. S.; Kim, S. J., Preparation of Titanate Nanotube Thin Film using Hydrothermal Method. Thin Solid Films, 2008, 516 (23), 8363–8371.
    Gurgel, L. V. A.; de Freitas, R. P.; Gil, L. F., Adsorption of Cu(II), Cd(II), and Pb(II) from Aqueous Single Metal Solutions by Sugarcane Bagasse and Mercerized Sugarcane Bagasse Chemically Modified with Succinic Anhydride. Carbohydrate Polymers, 2008, 74 (4), 922–929.
    Gao, T.; Fjellvåg, H.; Norby, P., Crystal Structures of Titanate Nanotubes: A Raman Scattering Study. Inorganic Chemistry, 2009, 48 (4), 1423–1432.
    Gao, Z. M.; Bandosz, T. J.; Zhao, Z. B.; Han, M.; Qiu, J. S., Investigation of Factors Affecting Adsorption of Transition Metals on Oxidized Carbon Nanotubes. Journal of Hazardous Materials, 2009, 167 (1-3) 357–365.
    Guo, C. S.; Ge, M.; Liu, L.; Gao, G. D.; Feng, Y.C.; Wang,Y. Q., Directed Synthesis of Mesoporous TiO2 Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environmental Science & Technology, 2010, 44 (1), 419–425.
    Hoyer P., Formation of a Titanium Dioxide Nanotube Array. Langmuir, 1996, 12 (6), 1411-1413.
    Hulteen, J. C.; Martin, C. R., A General Template-Based Method for the Preparation of Nanomaterials. Journal of Materials Chemistry, 1997, 7 (7), 1075.
    Ho, Y. S.; McKay, G., Sorption of Dye from Aqueous Solution by Peat. Chemical Engineering Journal, 1998, 70 (2), 115–124.
    Hunt, P. A.; Koehler, K. E.; Susiarjo, M.; Hodges, C. A.; Ilagan, A.; Voigt, R. C.; Thomas, S.; Thomas, B. F.; Hassold, T. J., Bisphenol A Exposure Causes Meiotic Aneuploidy in the Female Mouse. Current Biology, 2003, 13 (7), 546–553.
    Hodos, M.; Horvath, E.; Haspel, H.; Kukovecz, A.; Konya, Z.; Kiricsi, I., Photo sensitization of Ion-Exchangeable Titanate Nanotubes by CdS Nanoparticles. Chemical Physics Letters, 2004, 399 (4-6), 512-515.
    Hur, S. G.; Park, D. H.; Kim, T. W.; Hwang, S. J., Evolution of the Chemical Bonding Nature of Ferroelectric Bismuth Titanate upon Cation Substitution. Applied Physics Letters, 2004, 85 (18), 4130-4132.
    Huang, F. Z.; Zhou, M. F.; Cheng, Y. B.; Caruso, R. A., Al-containing Porous Titanium Dioxide Networks: Sol-gel Synthesis within Agarose Gel Template and Photocatalytic Activity. Chemistry of Materials, 2006, 18 (25), 5835-5839.
    Hou, L. R.; Yuan, C. Z.; Peng, Y., Synthesis and Photocatalytic Property of SnO2/TiO2 Nanotubes Composites. Journal of Hazardous Materials, 2007, 139 (2), 310-315.
    Horvath, E.; Kukovecz, A.; Konya, Z.; Kiricsi, I., Hydrothermal Conversion of Self-Assembled Titanate Nanotubes into Nanowires in a Revolving Autoclave. Chemistry of Materials, 2007, 19 (4), 927-931.
    Huang, J. Q.; Cao, Y. G.; Huang, Q. F.; He, H.; Liu, Y.; Guo, W.; Hong, M. C., High-Temperature Formation of Titanate Nanotubes and the Transformation Mechanism of Nanotubes into Nanowires. Crystall Growth Design, 2009, 9 (8), 3632–3637.
    Hamadanian, M.; Reisi-Vanani, A.; Majedi, A., Synthesis, Characterization and Effect of Calcination Temperature on Phase Transformation and Photocatalytic Activity of Cu, S-codoped TiO2 Nanoparticles. Applied Surface Science, 2010, 256 (6), 1837–1844.
    Hu, X. J.; Li, Y. S.; Wang, Y.; Li, X. X.; Li, H. Y.; Liu, X.; Zhang, P., Adsorption Kinetics, Thermodynamics and Isotherm of Thiacalix[4] arene-loaded Resin to Heavy Metal Ions. Desalination, 2010, 259 (1-3), 76–83.
    Iijima, S., Helical Microtubules of Graphitic Carbon. Nature, 1991, 354 (6348), 56-58.
    Idakiev, V.; Yuan, Z. Y.; Tabakova, T.; Su, B. L., Titanium Oxide Nanotubes as Supports of Nano-Sized Gold Catalysts for Low Temperature Water-Gas Shift Reaction. Applied Catalysis A-General, 2005, 281 (1-2), 149-155.
    Inoue, M.; Masuda, Y.; Okada, F.; Sakurai, A.; Takahashi, I.; Sakakibara, M., Degradation of Bisphenol A Using Sonochemical Reactions. Water research, 2008, 42 (6-7), 1379–1386.
    Inagaki, M.; Kondo, N.; Nonaka, R.; Ito, E.; Toyoda, M.; Sogabe, K.; Tsumura, T., Structure and Photoactivity of Titania Derived from Nanotubes and Nanofibers. Journal of Hazardous Materials, 2009, 161 (2-3), 3246–3253
    Jones, C. M.; Burkitt, M. J., EPR Spin-Trapping Evidence for the Direct, One-Electron Reduction of Tert-Butylhydroperoxide to the Tert-Butoxyl Radical by Copper(II): Paradigm for a Previously Overlooked Reaction in the Initiation of Lipid Peroxidation. Journal of the American Chemical Society, 2003, 125 (23), 6946-6954.
    Jiang, J. Q.; Yin, Q.; Zhou, J. L.; Pearce, P., Occurrence and Treatment Trials of Endocrine Disrupting Chemicals (EDCs) in Wastewaters. Chemosphere, 2005, 61 (4), 544–550.
    Jang, J. S.; Choi, S. H.; Kim, D. H.; Jang, J. W.; Lee, K. S.; Lee, J. S., Enhanced Photocatalytic Hydrogen Production from Water-Methanol Solution by Nickel Intercalated into Titanate Nanotube. Journal of Physical Chemistry C, 2009, 113 (20), 8990–8996.
    Kosky, P. G.; Silva, J. M.; Guggenheim, E. A. The Aqueous Phase in the Interfacial Synthesis of Polycarbonates. 1. Ionic Equilibria and Experimental Solubilities in the BPA-NaOH-H2O System. Industrial & Engineering Chemistry Research, 1991, 30 (3), 462–467.
    Kavan, L.; Gratzel, M.; Rathousky, J.; Zukal, A., Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties. Journal of the Electrochemical Society, 1996, 143 (2), 394-400.
    Kasuga, T.; Hiramatsu, M,; Hoson, A.; Sekino, T.; Niihara, K., Formation of Titanium Oxide Nanotube. Langmuir, 1998, 14 (12), 3160-3163.
    Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Titania Nanotubes Prepared by Chemical Processing. Advanced Materials, 1999, 11 (15), 1307-1311.
    Kannan, K.; Sundaram, M. M., Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons—A Comparative Study. Dyes Pigments, 2001, 51 (1), 25–40.
    Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L. B.; Buxton, H. T., Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in US Streams, 1999-2000: A national reconnaissance. Environmental Science & Technology, 2002, 36 (6), 1202–1211.
    Kaneco, S.; Rahman, M. A.; Suzuki, T.; Katsumata, H.; Ohta, K., Optimization of Solar Photocatalytic Degradation Conditions of Bisphenol A in Water using Titanium Dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163 (3), 419–424.
    Kavan, L.; Kalbac, M.; Zukalova, M.; Exnar, I.; Lorenzen, V.; Nesper, R.; Graetzel, M., Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth. Chemistry of Materials, 2004, 16 (3), 477-485.
    Kubota, S.; Johkura, K.; Asanuma, K.; Okouchi, Y.; Ogiwara, N.; Sasaki, K.; Kasuga, T., Titanium Oxide Nanotubes for Bone Regeneration. Journal of Materials Science-Materials in Medicine, 2004, 15, (9), 1031-1035.
    Kalavathy, M. H.; Karthikeyan, T.; Rajgopal, S.; Miranda, L. R., Kinetic and Isotherm Studies of Cu(II) Adsorption onto H3PO4-Activated Rubber Wood Sawdust. Journal of Colloid and Interface Science, 2005, 292 (2), 354–362.
    Kleinhammes, A.; Wagner, G. W.; Kulkarni, H.; Jia, Y. Y.; Zhang, Q.; Qin, L. C.; Wu, Y., Decontamination of 2-Chloroethyl Ethylsulfide using Titanate Nanoscrolls. Chemical Physics Letters, 2005, 411 (1-3), 81-85.
    Kukovecz, A.; Hodos, N.; Horvath, E.; Radnoczi, G.; Konya, Z.; Kiricsi, I., Oriented Crystal Growth Model Explains the Formation of Titania Nanotubes. Journal of Physical Chemistry B, 2005, 109 (38), 17781-17783.
    Kang, J. H.; Aasi, D.; Katayama, Y., Bisphenol A in the Aquatic Environment and Its Endocrine-Disruptive Effects on Aquatic Organisms. Critical Reviews in Toxicology, 2007, 37 (7), 607–625.
    Kumar, Y. P.; King, P.; Prasad, V. S. R. K., Adsorption of Zinc from Aqueous Solution using Marine Green Algae—Ulva Fasciata sp. Chemical Endineering Journal, 2007, 129 (1-3), 161–166.
    Kim, T. W.; Ha, H. W.; Paek, M. J.; Hyun, S. H.; Baek, I. H.; Choy, J. H.; Hwang, S. J., Mesoporous Iron Oxide-Layered Titanate Nanohybrids: Soft-Chemical Synthesis, Characterization, and Photocatalyst Application. Journal of Physical Chemistry C, 2008, 112 (38), 14853–14862.
    Kuo, C. Y.; Wu, C. H.; Wu, J. Y., Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. Journal of Colloid and Interface Science, 2008, 327 (2), 308-315.
    Kubo, T.; Takeuchi, M.; Matsuoka, M.; Anpo, M.; Nakahira, A., Morphologic Control of Pt Supported Titanate Nanotubes and Their Photocatalytic Property. Catalysis Letters, 2009, 130 (1-2), 28–36.
    Kim, T. W.; Ha, H. W.; Paek, M. J.; Hyun, S. H.; Choy, J. H.; Hwang, S. J., Unique Phase Transformation Behavior and Visible Light Photocatalytic Activity of Titanium Oxide Hybridized with Copper Oxide. Journal of Materials Chemistry, 2010, 20 (16), 3238–3245.
    Kuo, C. Y.; Wu, C. H.; Lin, H. Y., Photocatalytic Degradation of Bisphenol A in a Visible Light/TiO2 System. Desalination, 2010, 256 (1-3), 37–42.
    Lagergren, S.; Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898, 24 (4), 1–39.
    Li, Y. H.; Wang, S. G.; Cao, A. Y.; Zhao, D. L.; Zhang, X. F.; Xu, C. L.; Luan, Z. K.; Ruan, D. B.; Liang, J.; Wu, D. H.; Wei, B. Q., Adsorption of Fluoride from Water by Amorphous Alumina Supported on Carbon Nanotubes. Chemical Physics Letters, 2001, 350 (5-6), 412–416.
    Li, Y. H.; Wang, S. G.; Wei, J. Q.; Zhang, X. F.; Xu, C. L.; Luan, Z. K.; Wu, D. H.; Wei, B. Q., Lead Adsorption on Carbon Nanotubes. Chemical Physics Letters, 2002, 357 (3-4), 263–266.
    Lin, C. H.; Chien, S. H.; Chao, J. H.; Sheu, C. Y.; Cheng, Y. C.; Huang, Y. J.; Tsai, C. H., The Synthesis of Sulfated Titanium Oxide Nanotubes. Catalysis Letters, 2002, 80 (3-4), 153-159.
    Li, Y. H.; Wang, S. G.; Luan, Z. K.; Ding, J.; Xu, C. L.; Wu, D. H., Adsorption of Cadmium from Aqueous Solution by Surface Oxidized Carbon Nanotubes. Carbon, 2003, 41 (5), 1057–1062.
    Lee, J. M.; Kim, M. S.; Kim, B. W., Photodegradation of Bisphenol-A with TiO2 Immobilized on the Glass Tubes Including the UV Light Lamps. Water Research, 2004, 38 (16), 3605–3613.
    Lin, C. H.; Lee, C. H.; Chao, J. H.; Kuo, C. Y.; Cheng, Y. C.; Huang, W. N.; Chang, H. W.; Huang, Y. M.; Shih, M. K., Photocatalytic Generation of H2 Gas from Neat Ethanol over Pt/TiO2 Nanotube Catalysts. Catalysis Letters, 2004, 98 (1), 61-66.
    Larous, S.; Meniai, A. H.; Lehocine, M. B., Experimental Study of the Removal of Copper from Aqueous Solutions by Adsorption using Sawdust. Desalination, 2005, 185 (1-3), 483–490.
    Lan, Y.; Gao, X. P.; Zhu, H. Y.; Zheng, Z. F.; Yan, T. Y.; Wu, F.; Ringer, S. P.; Song, D. Y., Titanate Nanotubes and Nanorods Prepared from Rutile Powder. Advanced Functional Materials, 2005, 15 (8), 1310-1318.
    Li, N.; Bai, R. B., Copper Adsorption on Chitosan-cellulose Hydrogel Beads: Behaviours and Mechanisms. Separation and Purification Technology, 2005, 42 (3), 237–247.
    Li, J. R.; Tang, Z. L.; Zhang, Z. T., Layered Hydrogen Titanate Nanowires with Novel Lithium Intercalation Properties. Chemistry of Materials, 2005, 17 (23), 5848-5855.
    Lu, C. S.; Chiu, H.; Liu, C., Removal of Zinc(II) from Aqueous Solution by Purified Carbon Nanotubes: Kinetics and Equilibrium Studies. Industrial & Engineering Chemistry Research, 2006, 45 (8) 2850–2855.
    Lee, C. K.; Wang, C. C.; Lyu, M. D.; Juang, L. C.; Liu, S. S.; Hung, S. H., Effects of Sodium Content and Calcination Temperature on the Morphology, Structure and Photocatalytic Activity of Nanotubular Titanates. Journal of Colloid and Interface Science, 2007, 316 (2), 562–569.
    Lee, B.; Ha, E.; Park, H.; Kim, B.; Seo, J.; Chang, M.; Ha, M.; Kim, Y.; Roh, Y.; Hong, Y., Exposure to bisphenol A in Pregnant Women and early fetal growth. Epidemiology, 2008, 19 (6), S365-S365.
    Lin, C. H.; Chao, J. H.; Liu, C. H., Chang, J. C.; and Wang, F. C., Effect of Calcination Temperature on the Structure of a Pt/TiO (B) Nanofiber and Its Photocatalytic Activity in Generating H2. Langmuir, 2008, 24 (17), 9907-9915.
    Lin, K.; Liu, W. P.; Gan, J., Oxidative Removal of Bisphenol A by Manganese Dioxide: Efficacy, Products, and Pathways. Environmental Science & Technology, 2009, 43 (10), 3860–3864.
    Liu, H.; Zhao, H.; Quan, X.; Zhang, Y.; Chen, S., Formation of Chlorinated Intermediate from Bisphenol A in Surface Saline Water under Simulated Solar Light Irradiation. Environmental Science & Technology, 2009, 43 (20), 7712–7717.
    Li, Y. H.; Liu, F. Q.; Xia, B.; Du, Q. J.; Zhang, P.; Wang, D. C.; Wang, Z. H.; Xia, Y. Z., Removal of Copper from Aqueous Solution by Carbon Nanotube/calcium Alginate Composites. Journal of Hazardous Materials, 2010, 177, 876–880.
    Mckale, A. G.; Veal, B. W.; Paulikas, A. P.; Chan, S. K.; Knapp, G. S., Improved Abinitio Calculations of Amplitude and Phase Functions for Extended X-ray Absorption Fine-Structure Spectroscopy. Journal of the American Chemistry Society, 1988, 110 (12), 3763-3768.
    Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Pishko, M. V.; Grimes, C. A., A Room-Temperature TiO2-nanotube Hydrogen Sensor able to Self-clean Photoactively from Environmental Contamination. Journal of Materials Research, 2004, 19 (2), 628-634.
    Ma, R. Z.; Fukuda, K.; Sasaki, T.; Osada, M.; Bando, Y., Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-ray Absorption Fine Structure and Electron Diffraction Characterizations. Journal of Physical Chemistry B, 2005, 109 (13), 6210-6214.
    Mor, G. K,; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C.A., Enhanced Photocleavage of Water using Titania Nanotube Arrays. Nano Letters, 2005, 5 (1), 191-195.
    Ma. Y. T.; Lin, Y.; Xiao, X. R.; Zhou, X. W.; Li, X. P., Sonication-Hydrothermal Combination Technique for the Synthesis of Titanate Nanotubes from Commercially Available Precursors. Materials Research Bulletin, 2006, 41 (2), 237- 243.
    Mall, I. D.; Srivastava, V. C.; Agarwal, N. K., Removal of Orange-G and Methyl Violet Dyes by Adsorption onto Bagasse Fly Ash- Kinetic Study and Equilibrium Isotherm Analyses. Dyes Pigment, 2006, 69 (3), 210-223.
    Mao, M.; Liu, Z. B.; Wang, T.; Yu, B. Y.; Wen, X.; Yang, K. G.; Zhao, C. S., Polysulfone-Activated Carbon Hybrid Particles for the Removal of BPA. Separation Science and Technology, 2006, 41(3), 515–529.
    Menzel, R.; Peiro, A. M.; Durrant, J. R.; Shaffer, M. S. P., Impact of Hydrothermal Processing Conditions on High Aspect Ratio Titanate Nanostructures. Chemistry of Materials, 2006, 18 (25), 6059-6068.
    Morgado, E.; de Abreu, M. A. S.; Pravia, O. R. C.; Marinkovic, B. A.; Jardim, P. M. Rizzo, F. C. Araújo, A. S., A Study on the Structure and Thermal Stability of Titanate Nanotubes as a Function of Sodium Content. Solid State Sciences, 2006, 8 (8), 888–900.
    Martins, A. F.; Cardoso, A. L.; Stahl, J. A.; Diniz, J., Low Temperature Conversion of Rice Husks, Eucalyptus Sawdust and Peach Stones for the Production of Carbon-like Adsorbent. Bioresource Technology, 2007, 98 (5), 1095–1100.
    Morgado, E.; de Abreu, M. A. S.; Moure, G. T.; Marinkovic, B. A.; Jardim, P. M.; Araujo, A. S., Characterization of Nanostructured Titanates Obtained by Alkali Treatment of TiO2-Anatases with Distinct Crystal Sizes. Chemistry of Materials, 2007, 19 (4), 665-676.
    Nakada, N.; Shinohara, H.; Murata, A.; Kiri, K.; Managaki, S.; Sato, N.; Takada, H., Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research, 2007, 41 (19), 4373–4382.
    Ngah, W. S. W.; Hanafiah, M. A. K. M., Adsorption of Copper on Rubber (Hevea Brasiliensis) Leaf Powder: Kinetic, Equilibrium and Thermodynamic Studies. Biochemical Engineering Journal, 2008, 39 (3), 521–530.
    Nakahira, A.; Kubo, T.; Numako, C., Formation Mechanism of TiO2-Derived Titanate Nanotubes Prepared by the Hydrothermal Process. Inorganic Chemistry, 2010, 49 (13), 5845-5852.
    Ollis, D. F.; Pelizzetti, E.; Serpone, N. Photocatalyzed Destruction of Water Contaminants. Environmental Science Technology, 1991, 25 (9), 1522– 1529.
    Ouki, S. K.; Kavannagh, M., Treatment of Metals-Contaminated Wastewaters by Use of Natural Zeolites. Water Science and Technology, 1999, 39 (10–11), 115–122.
    Ohko, Y.; Ando, I.; Niwa, C.; Tatsuma, T.; Yamamura, T.; Nakashima, T.; Kubota, Y.; Fujishima, A., Degradation of Bisphenol A in Water by TiO2 Photocatalyst. Environmental Science & Technology, 2001, 35 (11), 2365-2368.
    Oh, S. H.; Finones, R. R.; Daraio, C.; Chen, L. H.; Jin, S. H., Growth of Nano-Scale Hydroxyapatite Using Chemically Treated Titanium Oxide Nanotubes. Biomaterials, 2005, 26 (24), 4938-4943.
    Ohsaki, Y.; Masaki, N.; Kitamura, T.; Wada, Y.; Okamoto, T.; Sekino, T.; Niihara, K.; Yanagida, S., Dye-Sensitized TiO2 Nanotube Solar Cells: Fabrication and Electronic Characterization. Physical Chemistry Chemical Physics, 2005, 7 (24), 4157-4163.
    Oliveira, E. A.; Montanher, S. F.; Andrade, A. D.; Nobrega, J. A.; Rollemberg, M. C., Equilibrium Studies for the Sorption of Chromium and Nickel from Aqueous Solutions using Raw Rice Bran. Process Biochemistry, 2005, 40 (11), 3485–3490.
    Ou, H. U.; Lo, S. L., Review of Titania Nanotubes Synthesized via the Hydrothermal Treatment: Fabrication, Modification, and Application. Separation and Purification Technology, 2007, 58 (1), 179-191.
    Okour, Y.; Shon, H. K.; El Saliby, I. J.; Naidu, R.; Kim, J. B.; Kim, J. H., Preparation and Characterisation of Titanium Dioxide (TiO2) and Thiourea-Doped Titanate Nanotubes Prepared from Wastewater Flocculated Sludge. Bioresource Technology, 2010,101 (5), 1453–1458.
    Panday, K. K.; Prasad, G.; Singh, V. N., Cu (II) Removal from Aqueous Solutions by Fly Ash. Water Research, 1985, 19 (7), 869–873.
    Pleskov, Y. V., A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications. Russian Journal of Electrochemistry, 1999, 35 (10), 1137-1138.
    Poudel, B.; Wang, W. Z.; Dames, C.; Huang, J. Y.; Kunwar, S.; Wang, D. Z.; Banerjee, D.; Chen, G.; Ren, Z. F., Formation of Crystallized Titania Nanotubes and Their Transformation. into Nanowires. Nanotechnology, 2005, 16 (9), 1935-1940.
    Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Grimes, C. A., Application of Highly-Ordered TiO2 Nanotube-Arrays in Heterojunction Dye-Sensitized Solar Cells. Journal of Physics D-Applied Physics, 2006, 39 (12), 2498-2503.
    Qamar, M.; Yoon, C. R.; Oh, H. J.; Kim, D. H.; Jho, J. H.; Lee, K. S.; Lee, W. J.; Lee H. G.; Kim, S. J., Effect of Post Treatments on the Structure and Thermal Stability of Titanate Nanotubes. Nanotechnology, 2006, 17 (24), 5922-5929.
    Rao, M. M.; Ramesh, A.; Rao, G. P. C.; Seshaiah, K., Removal of Copper and Cadmium from the Aqueous Solutions by Activated Carbon Derived from Ceiba Pentandra Hulls. Journal of Hazardous Materials, 2006, 129 (1-3), 123–129.
    Rao, G. P.; Lu, C.; Su, F., Sorption of Divalent Metal ions from Aqueous Solution by Carbon Nanotubes: A Review. Separation and Purification Technology, 2007, 58 (1), 224–231.
    Riss, A.; Berger, T.; Grothe, H.; Bernardi, J.; Diwald, O.; Knolzinger, E., Chemical Control of Photoexcited States in Titanate Nanostructures. Nano Letters, 2007, 7 (2), 433–438.
    Ren, Y. M.; Wei, X. Z.; Zhang, M. L., Adsorption Character for Removal Cu(II) by Magnetic Cu(II) ion Imprinted Composite Adsorbent. Journal of Hazardous Materials, 2008,158 (1), 14–22.
    Rozada, F.; Otero, M.; Moran, A.; Garcıa, A. I., Adsorption of Heavy Metals onto Sewage Sludge-Derived Materials. Bioresource Technology, 2008, 99 (14), 6332–6338.
    Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of Copper (II), Chromium (III), Nickel (II) and Lead (II) Ions from Aqueous Solutions by Meranti Sawdust. Journal of Hazardous Materials, 2009, 170 (2-3), 969–977.
    Sing, K. S. W., Reporting Physisorption Data for Gas-Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, 1982, 54 (11), 2201-2218.
    Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O’Block, S. T.; Harris, L. R., A review of the Environmental Fate, Effects, and Exposures of Bisphenol A. Chemosphere, 1998, 36 (10), 2149–2173.
    Sajiki, J.; Takahashi, K.; Yonekubo, J., Sensitive Method for the Determination of Bisphenol-A in Serum using two Systems of High Performance Lquid Chromatography. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Science, 1999,736 (1-2), 255–261.
    Seo, D. S.; Lee, J. K.; Kim, H., Preparation of Nanotube-Shaped TiO2 Powder. Journal of Crystal Growth, 2001, 229 (1), 428-432.
    Snyder, S. A.; Westerhoff, P.; Yoon, Y.; Sedlak, D. L. Pharmaceuticals, Personal Care Products, and Endocrine Disruptors in Water: Implications for the Water Industry. Environmental Engineering Science, 2003, 20 (5), 449–469.
    Sun, X. M.; Li, Y. D., Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes. Chemistry-A European Journal, 2003, 9 (10), 2229-2238.
    Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T., Electronic Band Structure of Titania Semiconductor Nanosheets Eevealed by Electrochemical and Photoelectrochemical studies. Journal of the American Chemical Society, 2004, 126 (18), 5851-5858.
    Suzuki, Y.; Yoshikawa, S., Synthesis and Thermal Analyses of TiO2-derived Nanotubes Prepared by the Hydrothermal Method. Journal of Materials Research, 2004, 19 (4), 982-985.
    Stan, S. D.; Woods, J. S.; Daeschel, M. A. Investigation of the Presence of OH Radicals in Electrolyzed NaCl Solution by Electron Spin Resonance Spectroscopy. Journal of Agricultural and Food Chemistry, 2005, 53 (12), 4901–4905.
    Shyue, J. J.; Cochran, R. E.; Padture, N. P., Transparent-Conducting, Gas-Sensing Nanostructures (Nanotubes, Nanowires, and Thin Films) of Titanium Oxide Synthesized at Near-Ambient Conditions. Journal of Materials Research, 2006, 21 (11), 2894-2903.
    Saha, B.; Chakraborty, S.; Das, G., A Comparative Metal Ion Adsorption Study by Trimesic Acid Coated Alumina: A Potent Adsorbent. Journal of Colloid and Interface Science, 2008, 323 (1), 26–32.
    Suetake, J.; Nosaka, A. Y.; Hodouchi, K.; Matsubara, H.; Nosaka, Y., Characteristics of Titanate Nanotube and the States of the Confined Sodium Ions. Journal of Physical Chemistry C, 2008, 112 (47), 18474–18482.
    Sprynskyy, M., Solid–liquid–solid extraction of heavy metals (Cr, Cu, Cd, Ni and Pb) in aqueous systems of zeolite-sewage sludge. Journal of Hazardous Materials, 2009, 161 (2-3), 1377–1383.
    Sheng, G. D.; Li, J. X.; Shao, D. D.; Hu, J.; Chen, C. L.; Chen, Y. X.; Wang, X. K., Adsorption of Copper(II) on Multiwalled Carbon Nanotubes in the Absence and Presence of Humic or Fulvic Acids. Journal of Hazardous Materials, 2010, 178 (1-3) 333–340.
    Subagio, D. P.; Srinivasan, M.; Lim, M.; Lim, T. T., Photocatalytic Degradation of Bisphenol-A by Nitrogen-doped TiO2 Hollow Sphere in a Vis-LED Photoreactor. Applied Catalysis B: Environmental, 2010, 95 (3-4), 414–422.
    Svilović, S.; Rušić, D.; Bašić, A., Investigations of Different Kinetic Models of Copper Ions Sorption on Zeolite 13X. Desalination, 2010, 259 (1-3), 71–75.
    Ternes, T. A.; Stumpf, M.; Mueller, J.; Haberer, K.; Wilken, R. D.; Servos, M., Behavior and Occurrence of Estrogens in Municipal Sewage Treatment Plants-I. Investigations in Germany, Canada and Brazil. Science of the Total Environment, 1999, 225 (1-2), 81–90.
    Taty-Costodes, V. C.; Fauduet, H.; Porte, C.; Delacroix, A., Removal of Cd(II) and Pb(II) ions from Aqueous Solutions by Adsorption onto Sawdust of Pinus Sylvestris, Journal of Hazardous Materials, 2003, 105 (1-3), 121–142.
    Toledo, I. B.; Ferro-Garcia, M. A.; Rivera-Utrilla, J.; Moreno- Castilla, C.; Fernandez, F. J. V., Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristics and Solution Chemistry. Environmental Sciemce & Technology, 2005, 39 (16), 6246–6250.
    Tsai C. C.; Teng, H. S., Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments. Chemistry of Materials, 2006, 18 (2), 367-373.
    Torres, R. A.; Abdelmalek, F.; Combet, E.; Petrier, C.; Pulgarin, C., A Comparative Study of Ultrasonic Cavitation and Fenton’s Reagent for Bisphenol A Degradation in Deionised and Natural Waters. Journal of Hazardous Materials, 2007, 146 (3), 546–551.
    Tsai, C. C.; Teng, H., Nanotube Formation from a Sodium Titanate Powder via Low-Temperature Acid Treatment. Langmuir, 2008, 24 (7), 3434-3438.
    Tsai, W. T.; Lee, M. K.; Su, T. Y.; Chang, Y. M., Photodegradation of Bisphenol-A in a Batch TiO2 Suspension Reactor. Journal of Hazardous Materials, 2009, 168 (1), 269–275.
    Torres-Palma, R, A.; Nieto, J. I.; Combet, E.; Petrier, C.; Pulgarin, C., An Innovative Ultrasound, Fe2+ and TiO2 Photoassisted Process for Bisphenol a Mineralization. Water research, 2010, 44 (7), 2245–2252.
    Uchida, S.; Chiba, R.; Tomiha, M.; Masaki, N.; Shirai, M., Application of Titania Nanotubes to a Dye-Sensitized Solar Cell. Electrochemistry, 2002, 70 (6), 418-420.
    Umek, P.; Cevc, P.; Jesih, A.; Gloter, A.; Ewels, C. P.; Arcon, D., Impact of Structure and Morphology on Gas Adsorption of Titanate-Based Nanotubes and Nanoribbons. Chemistry of Materials, 2005, 17 (24), 5945-5950.
    Umek, P.; Pregelj, M.; Gloter, A.; Cevc, P.; Jaglicic, Z.; Ceh, M.; Pirnat, U.; Arcon, D., Coordination of Intercalated Cu2+ Sites in Copper Doped Sodium Titanate Nanotubes and Nanoribbons. Journal of Physical Chemistry C, 2008, 112 (39), 15311–15319.
    Varghese, O. K.; Grimes, C. A., Metal Oxide Nanoarchitectures for Environmental Sensing. Journal of Nanoscience and Nanotechnology, 2003, 3 (4), 277-293.
    Venkatachalam, N.; Palanichamy, M.; Arabindoo, B.; Murugesan, V., Alkaline Earth Metal Doped Nanoporous TiO2 for Enhanced Photocatalytic Mineralisation of Bisphenol-A. Catalysis Communications, 2007, 8 (7), 1088–1093.
    Williams, C. J.; Aderhold, D.; Edyvean, G. J., Comparison between Biosorbents for the Removal of Metal Ions from Aqueous Solutions. Water Research, 1998, 32 (1), 216–224.
    Willett, K. L.; Hites, R. A., Chemical Actinometry: Using O-Nitrobenzaldehyde to Measure Light Intensity in Photochemical Experiments. Journal of Chemical Education, 2000, 77 (7), 900-902.
    Wang, Y. Q.; Hu, G. Q.; Duan, X. F.; Sun, H. L.; Xue, Q. K., Microstructure and Formation Mechanism of Titanium Dioxide Nanotubes. Chemistry Physics Letters, 2002, 365 (5-6), 427-431.
    Wu, C. H.; Lin, C. F.; Ma, H. W.; His, T. Q., Effect of Fulvic Acid on the Sorption of Cu and Pb onto Gamma-Al2O3. Water Research, 2003, 37 (4), 743-752.
    Watanabe, N.; Horikoshi, S.; Kawabe, H.; Sugie, Y.; Zhao, J. C.; Hidaka, H., Photodegradation Mechanism for Bisphenol A at the TiO2/H2O Interfaces. Chemosphere, 2003, 52 (5), 851–859.
    Wu, C. H.; Lin, C. F. ; Horng, P. Y., Adsorption of Copper and Lead, Ions onto Regenerated Sludge from a Water Treatment Plant. Journal of Environmental Science and Health Part A: Toxic/ Hazardous Substances & Environmental Engineering, 2004, 39 (1), 237-252.
    Wang, Y. G.; Zhang, X. G., Preparation and Electrochemical Capacitance of RuO2/TiO2 Nanotubes Composites. Electrochimica Acta, 2004, 49 (12), 1957-1962.
    Wang, M.; Guo, D. J.; Li, H. L., High Activity of Novel Pd/TiO2 Nanotube Catalysts for Methanol Electro-Oxidation. Journal of Solid State Chemistry, 2005, 178 (6), 1996-2000.
    Wang, X. S.; Qin, Y., Equilibrium Sorption Isotherms for of Cu2+ on Rice Bran. Process Biochemistry, 2005, 40 (2) 677–680.
    Wang, G.; Wang, Q.; Lu, W.; Li, J. H., Photoelectrochemical Study on Charge Transfer Properties of TiO2-B Nanowires with an Application as Humidity Sensors. Journal of Physical Chemistry B, 2006, 110 (43), 22029-22034.
    Wu, D.; Liu, J.; Zhao, X. N.; Li, A. D.; Chen, Y. F.; Ming, N. B., Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts. Chemistry of Materials, 2006, 18 (2), 547-553.
    Wu, C. H., Adsorption of Reactive Dye onto Carbon Nanotubes: Equilibrium, Kinetics and Thermodynamics. Journal of Hazardous Materials, 2007, 144 (1-2), 93-100.
    Wu, C. H., Studies of the Equilibrium and Thermodynamics of the Adsorption of Cu2+ onto As-produced and Modified Carbon Nanotubes. Journal of Colloid and Interface Science, 2007,311 (2) 338–346.
    Wang, X. W.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y., Ferromagnetism of Co-Doped Titanate and Anatase Nanorods Before and After Lithium Intercalation. Joyrnal of Physical Chemistry C, 2008, 112 (14), 5384-5389.
    Wang, W.; Zhang, J. W.; Huang, H. Z.; Wu, Z. S.; Zhang, Z. J., Surface-modification and Characterization of H-titanate nanotube. Colloid Surfaces A-Physicochemical and Engineering Aspects, 2008, 317, 270–276.
    Wang, L. S.; Xiao, M. W.; Huang, X. J.; Wu, Y. D., Synthesis, Characterization, and Photocatalytic Activities of Titanate Nanotubes Surface-decorated by Zinc Oxide Nanoparticles. Journal of Hazardous Materials, 2009, 161 (1), 49–54.
    Wang, R. C.; Ren, D. J.; Xia, S. Q.; Zhang, Y. L.; Zhao, J. F., Photocatalytic Degradation of Bisphenol A (BPA) using Immobilized TiO2 and UV Illumination in a Horizontal Circulating Bed Photocatalytic Reactor (HCBPR). Journal of Hazardous Materials, 2009, 169 (1-3), 926–932.
    Wu, Z. B.; Dong, F.; Zhao, W. R.; Wang, H. Q.; Liu, Y.; Guan, B. H., The Fabrication and Characterization of Novel Carbon Doped TiO2 Nanotubes, Nanowires and Nanorods with High Visible Light Photocatalytic Activity. Nanotechnology, 2009, 20 (23), 235701.

    Xu, J. C.; Lu, M.; Guo, X. Y.; Li, H. L., Zinc Ions Surface-Doped Titanium Dioxide Nanotubes and Its Photocatalysis Activity for Degradation of Methyl Orange in Water. Journal of Molecular Catalysis A-Chemical, 2005, 226 (1), 123-127.
    Xiong, L.; Yang, Y.; Mai, J. X.; Sun, W. J.; Zhang, C. Y.; Wei, D. P.; Chen, Q.; Ni, J. R., Adsorption Behavior of Methylene Blue onto Titanate Nanotubes. Chemical Engineering Journal, 2010, 156 (2), 313–320.
    Yao, H.; Ramelow, G. J., Evaluation of Treatment Techniques for Increasing the Uptake of Metal Ions from Solution by Nonliving Biomass Derived from Several Strains of Lichen, Sphagnum (peat) Moss, and Eichhornia Crassipes (Water Hyacinth) Root. Microbios, 1997, 90 (363), 97–109.
    Yang, S. W.; Carlson, K., Evolution of Antibiotic Occurrence in a River Through Pristine, Urban and Agricultural Landscapes. Water Research, 2003, 37 (19), 4645–4656.
    Yang, S. G.; Xie, Q.; Li, X. Y.; Liu, Y. Z.; Chen, S.; Chen, G. H., Preparation, Characterization and Photoelectrocatalytic Properties of Nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 Composite Film Electrodes Towards Pentachlorophenol Degradation. Physical Chemistry Chemical Physics, 2004, 6 (3), 659–664.
    Yuan, Z. Y.; Su, B. L., Titanium Oxide Nanotubes, Nanofibers and Nanowires. Colloid Surfaces A-Physicochemical and Engineering Aspects, 2004, 241 (1-3), 173-183.
    Yoshida, R.; Suzuki, Y.; Yoshikawa, S., Syntheses of TiO2(B) Nanowires and TiO2 Anatase Nanowires by Hydrothermal and Post Heat Treatments. Journal of Solid State Chemistry, 2005, 178 (7), 2179-2185.
    Yoshida, R.; Suzuki, Y.; Yoshikawa, S., Effects of Synthetic Conditions and Heat-Treatment on the Structure of Partially Ion-Exchanged Titanate Nanotubes. Materials Chemistry and Physics, 2005, 91 (2-3), 409-416.
    Yu, J. G.; Zhou, M. H.; Cheng, B.; Yu, H. G.; Zhao, X. J., Ultrasonic Preparation of Mesoporous Titanium Dioxide Nanocrystalline Photocatalysts and Evaluation of Photocatalytic Activity. Journal of Molecular Catalysis A-Chemical, 2005, 227 (1-2), 75-80.
    Yu, J. G.; Xiong, J. F.; Cheng, B.; Liu, S. W., Fabrication and Characterization of Ag-TiO2 Multiphase Nanocomposite Thin Films with Enhanced Photocatalytic Activity. Applied Catalysis B-Environmental, 2005, 60 (3-4), 211-221.
    Yeo, M. K.; Kang, M., Photodecomposition of Bisphenol A on Nanometer-Sized TiO2 Thin Film and the Associated Biological Toxicity to Zebrafish (Danio rerio) during and After Photocatalysis. Water research, 2006, 40 (9), 1906 – 1914.
    Yu, J. G.; Yu, H. G.; Cheng, B.; Trapalis. C., Effects of Calcination Temperature on the Microstructures and Photocatalytic Activity of Titanate Nanotubes. Journal of Molecular Catalysis A: Chemical, 2006, 249 (1-2), 135–142.
    Yu, J. G.; Yu, H. G.; Cheng, B.; Zhao X. J.; Zhang, Q. J., Preparation and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanofibers by Hydrothermal Method. Journal of Photochemistry and Photobiology A – Chemistry, 2006, 182 (2), 121-127.
    Yu, H. G.; Yu, J. G.; Cheng, B.; Liu, S. W., Novel Preparation and Photocatalytic Activity of One-Dimensional TiO2 Hollow Structures. Nanotechnology, 2007, 18 (6), 065604.
    Yu, H. G.; Yu, J. G.; Cheng, B.; Lin, J., Synthesis, Characterization and Photocatalytic Activity of Mesoporous Titania Nanorod/Titanate Nanotube Composites. Journal of Hazardous Materials, 2007, 147 (1-2), 581–587.
    Yu, Y. X.; Xu, D. S., Single-Crystalline TiO2 Nanorods: Highly Active and Easily Recycled Photocatalysts. Applied Catalysis B–Environmental, 2007, 73 (1-2), 166-171.
    Yin, J. B.; Zhao, X. P., Electrorheological Properties of Titanate Nanotube Suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 329 (3), 153–160.
    Yu, J.; Zhou, M. H., Effects of Calcination Temperature on Microstructures and Photocatalytic Activity of Titanate Nanotube Films Prepared by an EPD Method. Nanotechnology, 2008, 19 (4), 045606.
    Yin, P.; Xu, Q.; Qu, R. J.; Zhao, G. F., Removal of Transition Metal ions from Aqueous Solutions by Adsorption onto a Novel Silica Gel Matrix Composite Adsorbent. Journal of Hazardous Materials, 2009, 169 (1-3), 228–232.
    Yoshida, K.; Miao, L.; Tanaka1, N.; Tanemura, S., Direct Observation of TiO6 Octahedron Forming Titanate Nanotube by Advanced Transmission Electron Microscopy. Nanotechnology, 2009, 20 (40), 405709.
    Yu, L.; Yuan, S. A.; Shi, L. Y.; Zhao, Y.; Fang, J. H., Synthesis of Cu2+ Doped Mesoporous Titania and Investigation of Its Photocatalytic Ability under Visible Light. Microporous and Mesoporous Materials, 2010, 134 (1-3), 108–114.
    Zwilling, V.; Darque-Ceretti, E.; Boutry-Forveille, A.; David, D.; Perrin, M. Y.; Aucouturier, M., Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy. Surface and Interface Analysis, 1999, 27 (7), 629-637.
    Zhang, S.; Peng, L. M.; Chen, Q.; Du, G. H.; Dawson, G.; Zhou, W. Z., Formation Mechanism of H2Ti3O7 Nanotubes. Physical Review Letters, 2003, 91 (25), 256103-1-256103-4.
    Zhou, D.; Zhang, L.; Zhou, J. P.; Guo, S. L., Cellulose/chitin Beads for Adsorption of Heavy Metals in Aqueous Solution. Water Research, 2004, 38, 2643–2650.
    Zhang, S.; Chen, Q.; Peng, L. M., Structure and Formation of H2Ti3O7 Nanotubes in an Alkali Environment. Physical Review B, 2005, 71 (1), 014104.
    Zhang, H.; Li, G. R.; An, L. P.; Yan, T. Y.; Gao, X. P.; Zhu, H. Y., Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods. Journal of Physical Chemistry C, 2007, 111 (16), 6143-6148.
    Zhang, H. J.; Chen, G. H., Potent Antibacterial Activities of Ag/TiO2 Nanocomposite Powders Synthesized by a One-Pot Sol−Gel Method. Environmental Science & Technology, 2009, 43 (8), 2905–2910.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE