研究生: |
邱靖翔 Chiu, Ching-Hsiang |
---|---|
論文名稱: |
利用快速熱熔磊晶法製作鍺錫波導光偵測器 GeSn Waveguide Photodetectors Fabricated by Rapid Melt Growth Method |
指導教授: |
李明昌
Lee, Ming-Chang |
口試委員: |
謝光前
李明昌 巫勇賢 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
中文關鍵詞: | 鍺錫合金 、快速熱熔磊晶法 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著半導體產業的發展,半導體元件與矽晶圓整合愈來愈受到重視,光連結系統是相當有潛力的一個方向。鍺錫合金的特點為隨著錫濃度的改變,可以使鍺錫合金變成直接能隙材料,同時鍺錫合金可與矽晶圓有良好整合。由於鍺錫與矽之間的晶格常數差異,使得鍺錫合金與矽晶圓的異質整合得仰賴於磊晶技術的改進,但製程中所累積的熱積存無法避免地會使鍺錫元件與積體電路之間的整合變得更加困難。
快速熱熔磊晶法是一種應用於異質整合的方法,透過快速熱熔磊晶法,可以製作出矽鍺錫異質整合元件,藉由矽波導的光學耦合,我們成功製作出高耦合效率之鍺錫波導光偵測器,同時維持鍺錫合金的結晶品質,並拓展傳統鍺光偵測器光響應的波長範圍,透過金屬-半導體-金屬光偵測器的結構,使元件具備高速運作的可能。利用快速熱熔磊晶法製作鍺錫金屬-半導體-金屬光偵測器,特點在於製程簡易花費低、高結晶品質、低熱積存、高相容性以及高頻寬。
As development of semiconductor industry, monolithic integration of silicon and other semiconductor devices is attracting significant interest. For optical interconnects to silicon chips, germanium-tin (GeSn) alloy is one of the most promising solutions due to its beneficial properties, such as the potential to become direct bandgap and compatibility with CMOS technology. Conventionally, GeSn alloy is grown by molecular beam epitaxy (MBE). However, thermal budget problem in epitaxy diminishes the compatibility with integrated circuits (ICs).
Rapid melt growth (RMG) is a good processing method to realize hetero-integration with small thermal budget. By using RMG method, we successfully fabricate single-crystalline GeSn waveguide photodetectors on a SOI wafer with high-efficiency optical coupling. Due to tin-alloying, the detection wavelength of GeSn photodetectors is extended to 2000nm. Metal-semiconductor-metal (MSM) devices have the advantages of simple process and high-speed response. GeSn MSM photodetector fabricated by RMG is featured with simple process, low cost, high crystallinity, small thermal budget, good compatibility and high bandwidth.
[1] M. T. Bohr, “Interconnect Scaling - The Real Limiter to High Performance ULSI,” IEEE Int. Electron Devices Meeting 241-244 (1995).
[2] K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, S. Torii, K. Nose, M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki, A. Gomyo, T. Ishi, D. Okamoto, K. Furue, T. Ueno, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, and J. Akedo, “On-Chip Optical Interconnect,” Proc. IEEE 97, 1186-1198 (2009).
[3] J. Liu, “Monolithically Integrated Ge-on-Si Active Photonics,” Photonics 1, 162-197 (2014).
[4] A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent lase,” Opt. Express 14, 9203-9210 (2006).
[5] S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications,” IEEE Int. Electron Devices Meeting 33.8 (2012).
[6] M. Jutzi, M. Berroth, G. Wohl, M. Oehme, E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth,” IEEE Photon. Technol. Lett. 17, 1510-1512 (2005).
[7] D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, . V. Krishnamoorthy and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).
[8] H. Kanbe, M. Miyaji and T. Ito, “Ge/Si heterojunction photodiodes fabricated by low temperature wafer bonding,” Appl. Phys. Express 1, 072301 (2008).
[9] F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100, 092102 (2012).
[10] J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272-11277 (2007).
[11] G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79, 1937-1940 (1997).
[12] R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316-11320 (2012).
[13] E. Kasper, M. Kittler, M. Oehme, and T. Arguirov, “Germanium tin: silicon photonics toward the mid-infrared,” Photon. Res. 1, 69-76 (2013).
[14] J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
[15] C. K. Tseng, W. T. Chen, K. H. Chen, H. D. Liu, Y. Kang, N. Na , and M. C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25 Gb/s high-speed optical interconnects,” Nat. Sci. Rep. 3, 3225 (2013).
[16] M. Kurosawa, Y. Tojo, R. Matsumura, T. Sadoh, and M. Miyao, “Single-crystalline laterally graded GeSn on insulator structures by segregation controlled rapid-melting growth”, Appl. Phys. Lett. 101, 091905 (2012).
[17.] E. D. Palik, “Handbook of optical constants of solids,” Academic Press (1985)
[18.] X. Sun, “Ge-on-Si Light-Emitting Materials and Devices for Silicon Photonics,” Diss. Peking University (2004).
[19] V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73, 125207 (2006).
[20] R. A. Soref, G. Sun and H. H. Cheng, “Franz-Keldysh electro-absorption modulation in germanium-tin alloys,” J. Appl. Phys. 111, 123113 (2012).
[21] J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95, 133506 (2009).
[22] D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102, 141111 (2013).
[23] D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Phys. Rev. Lett. 64, 1943 (1990).
[24] M. Jutzi, M. Berroth, G. Wohl, M. Oehme, E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth,” IEEE Photon. Technol. Lett. 17, 1510-1512 (2005).
[25] R. W. Olesinski, G. J. Abbaschian, “The Ge−Sn (Germanium−Tin) system,” Bulletin of Alloy Phase Diagrams 5, 265 (1984)
[26] H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102, 251907 (2013).
[27] M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101, 141110 (2012).
[28] Y. Liu, M. D. Deal, and J. D. Plummer, “High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates,” Appl. Phys. Lett. 84, 2563 (2004).
[29] S. L. Chen, P. B. Griffin, and J. D. Plummer, “Single-Crystal GaAs and GaSb on Insulator on Bulk Si Substrates Based on Rapid Melt Growth,” IEEE Electron Device Lett. 31, 597–599 (2010).
[30] E. Scheil, “Bemerkungen zur Schichtkristallbildung,” Z. Metallkd. 34, 70 (1942).
[31] F. A. Trumbore, ”Solid Solubilities of Impurity Elements in Germanium and Silicon,” Bell Syst. Tech. J. 39, 205 (1960).
[32] C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective Dark Current Suppression With Asymmetric MSM Photodetectors in Group IV Semiconductors,” IEEE Photon. Technol. Lett. 15, 1585-1587 (2003).
[33] J. H. Park and H. Y. Yu, “Dark current suppression in an erbium–germanium–erbium photodetector with an asymmetric electrode area,” Opt. Lett. 36, 1182-1184 (2011).
[34] H. Zang, S. J. Lee, W. Y. Loh, J. Wang, K. T. Chua, M. B. Yu, B. J. Cho, G. Q. Lo, and D. L. Kwong, “Dark-Current Suppression in Metal–Germanium–Metal Photodetectors Through Dopant-Segregation in NiGe—Schottky Barrier,” IEEE Electron Device Lett. 29, 161-164 (2008).
[35] M. Takenaka, K. Morii, M. Sugiyama, Y. Nakano, and S. Takagi, “Dark current reduction of Ge photodetector by GeO2 surface passivation and gas-phase doping,” Opt. Express 20, 8718-8725 (2012).
[36] J. D. Hwanga and E. H. Zhang, “Effects of a a-Si:H layer on reducing the dark current of 1310 nm metal–germanium–metal photodetectors,” Thin Solid Films 519, 3819–3821 (2011).
[37] F. Campabadal, V. Milian, and X. Aymerich-Hum, “Trap-Assisted Tunneling in MIS and Schottky Structures,” Phys. Stat. Sol. 79, 223 (1983).
[38] V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunications bands,” Semicond. Sci. Technol. 24, 115006 (2009).
[39] M. Klingenstein, and J. Kuhl, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37, 333-340 (1994).
[40] S. F. Soares, “Photoconductive Gain in a Schottky Barrier Photodiode,” J. Appl. Phys. 31, 210-216 (1992).
[41] C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, “Electron drift velocity and diffusivity in germanium,” Phys. Rev. B 24, 1014 (1981).
[42] J. Burm and L. F. Eastman, “Low-frequency gain in MSM photodiodes due to charge accumulation and image force lowering,” IEEE Photon. Technol. Lett. 8, 113 (1996).