研究生: |
張珮怡 Chang, Pei Yi |
---|---|
論文名稱: |
錫氧化物與規則中孔洞碳材複合材料之製備與鋰離子電池應用 Fabrication of SnOx (x = 0-2) and ordered mesoporous carbon composites for Li ion battery application |
指導教授: |
董瑞安
Doong, Ruey An 孫毓璋 Sun, Yuh Chang |
口試委員: |
白曛綾
Bai, Hsun Ling 胡啟章 Hu, Chi Chang 林弘萍 Lin, Hong Ping 李紫原 Lee, Chi Young |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 153 |
中文關鍵詞: | 鋰離子電池 、氧化錫奈米粒子 、規則中孔洞碳球 、微波輔助水熱法 、階層式孔洞 、奈米複合球體 |
外文關鍵詞: | Li ion battery, Tin oxide nanoparticles, Ordered mesoporous carbon sphere, Microwave assisted hydrothermal method, Hierarchical pores, Nano-spherical composites |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當今世代是個高度倚賴電子科技產品的社會,卻面臨嚴重的環境汙染、能源匱乏及氣候變遷的挑戰。為永續生存,積極發展低碳足跡、高效率的能源隨即成為重要的議題。自90年代發展至今,鋰離子電池是相較於其它二次電池最具化學穩定、高電容量、壽命長、最佳操作電位與輕量化的循環式電池,因此被視為最具開發潛力的能源轉換及儲存項目之一。目前市面上常見的負極材料為石墨,卻存在著理論或實際電容值皆不足以應付高速運算處理,甚或全電力驅動車的需求。近十幾年研究以來,具備高理論電容量、地表蘊藏量豐富、製造成本較低的錫基材料,將與碳複合結構一併發展,並且作為高開發潛力的活性物質。由於規則性中孔洞奈米碳球的高比表面積、階層式孔洞結構與高導電性等優點,能作為隔阻及緩衝錫在充放電過程中的體積膨脹變化,進而穩定負極活性物質結構與增加充放電壽命。此篇論文針對不同氧化態的錫奈米粒子複合於中孔洞奈米碳球,討論其在鋰離子電池應用上的行為表現。
首先在研究中,透過簡易且環境友善的微波輔助水熱法,探討不同碳前驅物之濃度比,分別調控出50、90和130 nm之不同尺寸的規則中孔洞碳球,並藉由各式電子顯微鏡、氮氣吸脫附特性分析、粉末式繞射、拉曼光譜或散射光譜與半電池特性進行討論。結果顯示,粒徑較大的碳球雖然直徑分布不均,卻因適當的中孔及大孔徑分布量,促使鋰離子能順利擴散至規則中孔洞碳球;並且配合較高的微孔洞表面積,進而增加鋰離子的吸附儲存量,使其在0.1 C充放電速率下得到560 mA h g-1的高比電容值,甚至在高速5 C充放電速率下保持240 mA h g-1的穩定比電容值。再者,同樣利用微波輔助水熱法,成功將無機錫前驅物與此碳球進行不同錫碳比之複合改質,其中不同的錫碳比例調控在5-35 wt%。一系列不同形貌與孔洞特性的錫氧化物-規則中孔洞碳球,透過物理化學特性及鋰離子嵌入嵌出之電化學表現進行探討。數據顯示,含有較高錫碳比(35 wt%)、高度規則中孔洞結構、較小尺寸的氧化錫(3-6 nm)粒子分布與奈米等級之複合材料尺寸(約120 nm),在35到3500 mA g-1速率下進行充放電75圈後,表現出1122至293 mA h g-1的高比電容值特性,並成功降低第一圈不可逆的比電容值,使得庫倫效率由< 40% 提高近60%。更進一步以3500 mA g-1超高速充放電400圈後,比電容值仍可維持在400 mA h g-1的高儲存能力。最後,透過電子穿透式顯微鏡的影響比較圖,得知充放電後所生成的金屬錫粒子(大小約5-10 nm)可均勻分布於結構穩定性高的規則中孔洞碳球上,同時佐證此碳球能有效緩衝二氧化錫奈米粒子在充放電期間所造成的體積膨脹與收縮。綜合其上,如此高效能二氧化錫與規則中孔洞碳球之奈米複合材料,確實具備最佳的階層式孔洞分布與緊密的二氧化錫奈米粒子堆積,遂而提升電子傳遞速度、降低極化現象、生成穩定的固體-電解質介面(Solid electrolyte interface layer),並且維持良好的奈米球體形貌,大幅提升整體氧化錫與中孔洞碳材在鋰離子電池應用上的充放電效率。
Nowadays, the society of highly dependent with electrical technologies is facing with seriously environmental pollution, over-consumption of limited fossil fuel, climate changed by greenhouse gas effect. For sustainable life in the future most be based on the development of low carbon footprint and high efficient energy storage. Since 1990s, Li ion batteries (LIBs) have been considered as high potential energy conversion due to the merits of chemical stability, higher capacity, longer lasting recharging, optimal operating potential and portable weight. For commercialization, graphitized carbon is commonly used as anode material, but there is a knotty problem of very low theoretical and experimental capacity for useless applying to high speed calculation and/or electric vehicles. In the past decade, Sn-based materials have been chosen as active materials for anode of LIBs because of its high theoretical capacity, abundant, easily synthesizing and low price. On the other hand, fabricating with the ordered mesoporous carbon spheres (OMCS) seems useful to buffer the huge volume change of Li-Sn formation due to their high surface area, hierarchical porous structures and good conductivity, resulting to stabilizing the microstructures and increase the cycle life. Herein, it was focused on the fabrication of various tin-based materials involved Sn, SnO and SnO2 composited with OMCS and further to estimate the electrochemical performances for Li storage in this study.
At first, a series of OMCS has been successfully synthesized with various diameters of 50, 90 and 130 nm via an environmentally benign, most effective and conventional hydrothermal method. The physical and chemical properties of OMCS have been evaluated by performing scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis, small-angle scattering system (SAXS), X-ray diffraction (XRD), Raman spectroscopy and electrochemical performances of coin type cell for Li storage. The results show that the OMCS with largest size has wide distribution of diameters and exhibit high specific capacity of 560 mA h g-1 at 0.1 C and 240 mA h g-1 at 5 C attributed by i) coexistence of mesopores and macropores for facilitating Li+ diffusion and ii) highest micropore surface area for increase of Li storage.
Various SnOx (x = 0-2) nanoparticles with various Sn/C ratio from 5 to 35 wt% composited OMCS have been successfully fabricated by the simple and green process of microwave assisted hydrothermal method. The present work followed the same physiochemical and electrochemical analysis. The SnO2/OMCS composite with highest Sn/C ratio (35 wt%), highly ordered mesoporous structure, smaller particles size of SnO2 (3-6 nm) and nanoscale composite (approximately 120 nm) exhibited high reversible capacity of 1122-293 mA h g-1 under the current densities of 35-3500 mA g-1 for 75 discharge-charge cycles. Also, the first coulombic efficient was significantly increased from 40% to 60% resulting to decrease the irreversible capacity in 1st cycle. Furthermore, it shows 400 mA h g-1 under ultra-high current density of 3500 mA g-1 for as longer as 400 cycles. Before and after cycles, the results from TEM images exhibited the uniform nanocomposites with Sn particles sizes of 5-10 nm and maintenance of spherical carbon with ordered mesopores. As excellent LIBs performance of SnO2/OMCS nanocomposites was contributed by rapid charge transfer, stable SEI layers and minimizing polarization effects carried out from highly integrated hierarchical pores and closed packing morphology between inter SnO2 nanoparticles with optimization of Sn loading amounts.
1. Yang, Z., J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, and J. Liu, Electrochemical energy storage for green grid. Chem Rev, 2011. 111(5): p. 3577-3613.
2. Jeong, G., Y.-U. Kim, H. Kim, Y.-J. Kim, and H.-J. Sohn, Prospective materials and applications for Li secondary batteries. Energy & Environmental Science, 2011. 4(6): p. 1986.
3. Tatsuda, N., T. Nakamura, D. Yamamoto, T. Yamazaki, T. Shimada, H. Inoue, and K. Yano, Synthesis of Highly Monodispersed Mesoporous Tin Oxide Spheres. Chemistry of Materials, 2009. 21(21): p. 5252-5257.
4. Kar, A., S. Kundu, and A. Patra, Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles. The Journal of Physical Chemistry C, 2011. 115(1): p. 118-124.
5. Zhang, R., J.Y. Lee, and Z.L. Liu, Pechini process-derived tin oxide and tin oxide–graphite composites for lithium-ion batteries. Journal of Power Sources, 2002. 112(2): p. 596-605.
6. Winter, M., J.O. Besenhard, M.E. Spahr, and P. Novák, Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials, 1998. 10(10): p. 725-763.
7. Yu, S.H., D.J. Lee, M. Park, S.G. Kwon, H.S. Lee, A. Jin, K.S. Lee, J.E. Lee, M.H. Oh, K. Kang, Y.E. Sung, and T. Hyeon, Hybrid Cellular Nanosheets for High-Performance Lithium-Ion Battery Anodes. J Am Chem Soc, 2015. 137(37): p. 11954-11961.
8. Li, Z.F., Q. Liu, Y. Liu, F. Yang, L. Xin, Y. Zhou, H. Zhang, L. Stanciu, and J. Xie, Facile Preparation of Graphene/SnO Xerogel Hybrids as the Anode Material in Li-Ion Batteries. ACS Appl Mater Interfaces, 2015. 7(49): p. 27087-27095.
9. Li, Y., Q. Meng, J. Ma, C. Zhu, J. Cui, Z. Chen, Z. Guo, T. Zhang, S. Zhu, and D. Zhang, Bioinspired Carbon/SnO2 Composite Anodes Prepared from a Photonic Hierarchical Structure for Lithium Batteries. ACS Appl Mater Interfaces, 2015. 7(21): p. 11146-11154.
10. Bhaskar, A., M. Deepa, M. Ramakrishna, and T.N. Rao, Poly(3,4-ethylenedioxythiophene) Sheath Over a SnO2 Hollow Spheres/Graphene Oxide Hybrid for a Durable Anode in Li-Ion Batteries. The Journal of Physical Chemistry C, 2014. 118(14): p. 7296-7306.
11. Wang, L., D. Wang, Z. Dong, F. Zhang, and J. Jin, Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery. Nano Lett, 2013. 13(4): p. 1711-1716.
12. Chen, J. and K. Yano, Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode. ACS Appl Mater Interfaces, 2013. 5(16): p. 7682-7687.
13. Wang, D., X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T.-K. Sham, and X. Sun, Defect-Rich Crystalline SnO2 Immobilized on Graphene Nanosheets with Enhanced Cycle Performance for Li Ion Batteries. The Journal of Physical Chemistry C, 2012. 116(42): p. 22149-22156.
14. Jin, Y.-H., K.-M. Min, S.-D. Seo, H.-W. Shim, and D.-W. Kim, Enhanced Li Storage Capacity in 3 nm Diameter SnO2 Nanocrystals Firmly Anchored on Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry C, 2011. 115(44): p. 22062-22067.
15. Kim, J.G., S.H. Nam, S.H. Lee, S.M. Choi, and W.B. Kim, SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl Mater Interfaces, 2011. 3(3): p. 828-835.
16. Bonino, C.A., L. Ji, Z. Lin, O. Toprakci, X. Zhang, and S.A. Khan, Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. ACS Appl Mater Interfaces, 2011. 3(7): p. 2534-2542.
17. Fulvio, P.F., S.S. Brown, J. Adcock, R.T. Mayes, B. Guo, X.-G. Sun, S.M. Mahurin, G.M. Veith, and S. Dai, Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery. Chemistry of Materials, 2011. 23(20): p. 4420-4427.
18. Liu, D., P. Yuan, D. Tan, H. Liu, T. Wang, M. Fan, J. Zhu, and H. He, Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products. J Colloid Interface Sci, 2012. 388(1): p. 176-184.
19. Song, L., D. Feng, N.J. Fredin, K.G. Yager, R.L. Jones, Q. Wu, D. Zhao, and B.D. Vogt, Challenges in fabrication of mesoporous carbon films with ordered cylindrical pores via phenolic oligomer self-assembly with triblock copolymers. ACS Nano, 2010. 4(1): p. 189-198.
20. Balaya, P., Size effects and nanostructured materials for energy applications. Energy & Environmental Science, 2008. 1(6): p. 645.
21. Bruce, P.G., B. Scrosati, and J.-M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 2008. 47(16): p. 2930-2946.
22. Jarvis, C.R., M.J. Lain, M.V. Yakovleva, and Y. Gao, A prelithiated carbon anode for lithium-ion battery applications. Journal of Power Sources, 2006. 162(2): p. 800-802.
23. Zhang, H.-L. and D.E. Morse, Kinetically controlled catalytic synthesis of highly dispersed metal-in-carbon composite and its electrochemical behavior. Journal of Materials Chemistry, 2009. 19(47): p. 9006.
24. L’vov, B.V., Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochimica Acta, 2000. 360(2): p. 109-120.
25. Palacin, M.R., Recent advances in rechargeable battery materials: a chemist's perspective. Chem Soc Rev, 2009. 38(9): p. 2565-2575.
26. Cheng, F., Z. Tao, J. Liang, and J. Chen, Template-directed materials for rechargeable lithium-ion batteries. Chem Mater, 2008. 20(3): p. 667-681.
27. Gao, X.P. and H.X. Yang, Multi-electron reaction materials for high energy density batteries. Energ Environ Sci, 2010. 3(2): p. 174-189.
28. Burke, A.F., Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles. Proceedings of the IEEE, 2007. 95(4): p. 806-820.
29. Amjad, S., S. Neelakrishnan, and R. Rudramoorthy, Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 2010. 14(3): p. 1104-1110.
30. Khaligh, A. and L. Zhihao, Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art. Vehicular Technology, IEEE Transactions on, 2010. 59(6): p. 2806-2814.
31. Axsen, J., K.S. Kurani, and A. Burke, Are batteries ready for plug-in hybrid buyers? Transport Policy, 2010. 17(3): p. 173-182.
32. Wakihara, M., Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports, 2001. 33(4): p. 109-134.
33. Armand, M. and J.M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652-657.
34. Treptow, R.S., Lithium Batteries: A Practical Application of Chemical Principles. Journal of Chemical Education, 2003. 80(9): p. 1015.
35. Goodenough, J.B. and K.S. Park, The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013. 135(4): p. 1167-1176.
36. Takehara, Z., Development of lithium rechargeable batteries in Japan. Journal of Power Sources, 1989. 26(1–2): p. 257-266.
37. Winter, M. and J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta, 1999. 45(1–2): p. 31-50.
38. Obrovac, M.N., L. Christensen, D.B. Le, and J.R. Dahn, Alloy Design for Lithium-Ion Battery Anodes. Journal of The Electrochemical Society, 2007. 154(9): p. A849-A855.
39. Hwang, S.S., C.G. Cho, and H. Kim, Polymer microsphere embedded Si/graphite composite anode material for lithium rechargeable battery. Electrochimica Acta, 2010. 55(9): p. 3236-3239.
40. Idota, Y., Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material. Science, 1997. 276(5317): p. 1395-1397.
41. Yuan, X., H. Liu, and J. Zhang. Lithium-ion batteries advanced materials and technologies. 2012; 1 online resource (xiv, 406 p., [408] p. of plates).]. Available from: http://eportal.lib.nthu.edu.tw/cgi-bin/licenseddb/xfer.cgi?url=http://www.crcnetbase.com/isbn/9781439841280 電子書.
42. Jia, X., X. Zhu, Y. Cheng, Z. Chen, G. Ning, Y. Lu, and F. Wei, Aerosol-Assisted Heteroassembly of Oxide Nanocrystals and Carbon Nanotubes into 3D Mesoporous Composites for High-Rate Electrochemical Energy Storage. Small, 2015. 11(26): p. 3135-3142.
43. Li, N. and F. University of. Applying nanoscale science to lithium-ion battery and membrane transport. 2003; 100 p.]. Available from: 電子書 http://eportal.lib.nthu.edu.tw/cgi-bin/licenseddb/xfer.cgi?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3117350.
44. Nie, A., L.Y. Gan, Y. Cheng, H. Asayesh-Ardakani, Q. Li, C. Dong, R. Tao, F. Mashayek, H.T. Wang, U. Schwingenschlogl, R.F. Klie, and R.S. Yassar, Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. ACS Nano, 2013. 7(7): p. 6203-6211.
45. Gowda, S.R., A.L. Reddy, M.M. Shaijumon, X. Zhan, L. Ci, and P.M. Ajayan, Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications. Nano Lett, 2011. 11(1): p. 101-106.
46. Liu, D. and G. Cao, Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy & Environmental Science, 2010. 3(9): p. 1218.
47. Sahoo, M. and S. Ramaprabhu, Enhanced electrochemical performance by unfolding a few wings of graphene nanoribbons of multiwalled carbon nanotubes as an anode material for Li ion battery applications. Nanoscale, 2015. 7(32): p. 13379-13386.
48. Ellis, B.L., K.T. Lee, and L.F. Nazar, Positive Electrode Materials for Li-Ion and Li-Batteries. Chemistry of Materials, 2010. 22(3): p. 691-714.
49. Ji, L., Z. Lin, M. Alcoutlabi, and X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 2011. 4(8): p. 2682.
50. Krishnan, R., T.M. Lu, and N. Koratkar, Functionally strain-graded nanoscoops for high power Li-ion battery anodes. Nano Lett, 2011. 11(2): p. 377-384.
51. Liu, B., P. Soares, C. Checkles, Y. Zhao, and G. Yu, Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett, 2013. 13(7): p. 3414-3419.
52. Liu, N., K. Huo, M.T. McDowell, J. Zhao, and Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep, 2013. 3: p. 1919.
53. Gao, X.-P. and H.-X. Yang, Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci., 2010. 3(2): p. 174-189.
54. Shukla, A.K. and T.P. Kumar, Materials for next-generation lithium batteries. Current Science (00113891), 2008. 94(3): p. 314-331.
55. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries†. Chemistry of Materials, 2010. 22(3): p. 587-603.
56. Badot, J.-C., É.c. Ligneel, O. Dubrunfaut, D. Guyomard, and B. Lestriez, A Multiscale Description of the Electronic Transport within the Hierarchical Architecture of a Composite Electrode for Lithium Batteries. Advanced Functional Materials, 2009. 19(17): p. 2749-2758.
57. Sun, X. and Y. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed Engl, 2004. 43(5): p. 597-601.
58. Tatsumi, K., N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, and H. Fujimoto, The Influence of the Graphitic Structure on the Electrochemical Characteristics for the Anode of Secondary Lithium Batteries. Journal of The Electrochemical Society, 1995. 142(3): p. 716-720.
59. Minami, T. and SpringerLink. Solid State Ionics for Batteries. 2005; xiv, 276 p.]. Available from: 電子書 http://eportal.lib.nthu.edu.tw/cgi-bin/licenseddb/xfer.cgi?url=http://dx.doi.org/10.1007/4-431-27714-5.
60. Welna, D.T., L. Qu, B.E. Taylor, L. Dai, and M.F. Durstock, Vertically aligned carbon nanotube electrodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(3): p. 1455-1460.
61. Qiu, Y., K. Yan, and S. Yang, Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. Chem Commun (Camb), 2010. 46(44): p. 8359-8361.
62. Fang, Y., Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, and D. Zhao, Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J Am Chem Soc, 2013. 135(4): p. 1524-1530.
63. Zhang, W.-M., J.-S. Hu, Y.-G. Guo, S.-F. Zheng, L.-S. Zhong, W.-G. Song, and L.-J. Wan, Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. Advanced Materials, 2008. 20(6): p. 1160-1165.
64. Nishihara, H. and T. Kyotani, Templated nanocarbons for energy storage. Adv Mater, 2012. 24(33): p. 4473-4498.
65. Yang, H., Q. Shi, X. Liu, S. Xie, D. Jiang, F. Zhang, C. Yu, B. Tu, and D. Zhao, Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetryElectronic supplementary information (ESI) available: experimental section and further characterisation data (Fig. S1???4). See http://www.rsc.org/suppdata/cc/b2/b209233f. Chemical Communications, 2002(23): p. 2842-2843.
66. Hu, Y.S., P. Adelhelm, B.M. Smarsly, S. Hore, M. Antonietti, and J. Maier, Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High-Rate Capability. Advanced Functional Materials, 2007. 17(12): p. 1873-1878.
67. Choi, J.W., J. McDonough, S. Jeong, J.S. Yoo, C.K. Chan, and Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett, 2010. 10(4): p. 1409-1413.
68. Su, D.S. and R. Schlogl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem, 2010. 3(2): p. 136-168.
69. Subramanian, V., A. Karki, K.I. Gnanasekar, F.P. Eddy, and B. Rambabu, Nanocrystalline TiO2 (anatase) for Li-ion batteries. Journal of Power Sources, 2006. 159(1): p. 186-192.
70. Alcántara, R., G.F. Ortiz, P. Lavela, J.L. Tirado, R. Stoyanova, and E. Zhecheva, EPR, NMR, and Electrochemical Studies of Surface-Modified Carbon Microbeads. Chemistry of Materials, 2006. 18(9): p. 2293-2301.
71. Aurbach, D., B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999. 45(1–2): p. 67-86.
72. Vu, A., Y. Qian, and A. Stein, Porous Electrode Materials for Lithium-Ion Batteries – How to Prepare Them and What Makes Them Special. Advanced Energy Materials, 2012. 2(9): p. 1056-1085.
73. White, R.J., V. Budarin, R. Luque, J.H. Clark, and D.J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources. Chemical Society Reviews, 2009. 38(12): p. 3401-3418.
74. Shen, Y. and A.C. Lua, A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition. J Colloid Interface Sci, 2016. 462: p. 48-55.
75. Ma, Y., C. Ma, J. Sheng, H. Zhang, R. Wang, Z. Xie, and J. Shi, Nitrogen-doped hierarchical porous carbon with high surface area derived from graphene oxide/pitch oxide composite for supercapacitors. J Colloid Interface Sci, 2016. 461: p. 96-103.
76. Prabhu, A., A. Al Shoaibi, and C. Srinivasakannan, Synthesis of porous sulfonated carbon as a potential adsorbent for phenol wastewater. Water Sci Technol, 2015. 72(9): p. 1594-1600.
77. Iverson, C.D., Y. Zhang, and C.A. Lucy, Diazonium modification of porous graphitic carbon with catechol and amide groups for hydrophilic interaction and attenuated reversed phase liquid chromatography. J Chromatogr A, 2015. 1422: p. 186-193.
78. Sreenivasulu, B., I. Sreedhar, P. Suresh, and K.V. Raghavan, Development Trends in Porous Adsorbents for Carbon Capture. Environ Sci Technol, 2015. 49(21): p. 12641-12661.
79. Kang, D., Q. Liu, J. Gu, Y. Su, W. Zhang, and D. Zhang, "Egg-Box"-Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors. ACS Nano, 2015. 9(11): p. 11225-11233.
80. Campbell, B., R. Ionescu, Z. Favors, C.S. Ozkan, and M. Ozkan, Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries. Sci Rep, 2015. 5: p. 14575.
81. Li, G., L. Wang, W. Li, and Y. Xu, Fe-, Co-, and Ni-Loaded Porous Activated Carbon Balls as Lightweight Microwave Absorbents. Chemphyschem, 2015.
82. Chen, X., D. Cui, X. Wang, X. Wang, and W. Li, Porous carbon with defined pore size as anode of microbial fuel cell. Biosens Bioelectron, 2015. 69: p. 135-141.
83. Skouteris, G., D. Saroj, P. Melidis, F.I. Hai, and S. Ouki, The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation - A critical review. Bioresour Technol, 2015. 185: p. 399-410.
84. Foo, K.Y. and B.H. Hameed, A short review of activated carbon assisted electrosorption process: an overview, current stage and future prospects. J Hazard Mater, 2009. 170(2-3): p. 552-559.
85. Dias, J.M., M.C. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, and M. Sanchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manage, 2007. 85(4): p. 833-846.
86. Zhou, J., Y. Wang, J. Wang, W. Qiao, D. Long, and L. Ling, Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres. J Colloid Interface Sci, 2016. 462: p. 200-207.
87. Hou, J., T. Cao, F. Idrees, and C. Cao, A co-sol-emulsion-gel synthesis of tunable and uniform hollow carbon nanospheres with interconnected mesoporous shells. Nanoscale, 2015.
88. Zielinska, B., B. Michalkiewicz, E. Mijowska, and R.J. Kalenczuk, Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application. Nanoscale Res Lett, 2015. 10(1): p. 430.
89. Peng, X., F. Hu, F.L. Lam, Y. Wang, Z. Liu, and H. Dai, Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon. J Colloid Interface Sci, 2015. 460: p. 349-360.
90. Wang, W. and D. Yuan, Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Sci Rep, 2014. 4: p. 5711.
91. Li, Y., B. Yuan, J. Fu, S. Deng, and X. Lu, Adsorption of alkaloids on ordered mesoporous carbon. J Colloid Interface Sci, 2013. 408: p. 181-190.
92. Qin, H., P. Gao, F. Wang, L. Zhao, J. Zhu, A. Wang, T. Zhang, R. Wu, and H. Zou, Highly efficient extraction of serum peptides by ordered mesoporous carbon. Angew Chem Int Ed Engl, 2011. 50(51): p. 12218-12221.
93. Roberts, A.D., X. Li, and H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev, 2014. 43(13): p. 4341-4356.
94. Qiang, Z., J. Xue, G.E. Stein, K.A. Cavicchi, and B.D. Vogt, Control of ordering and structure in soft templated mesoporous carbon films by use of selective solvent additives. Langmuir, 2013. 29(27): p. 8703-8712.
95. Kruk, M., B. Dufour, E.B. Celer, T. Kowalewski, M. Jaroniec, and K. Matyjaszewski, Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor. J Phys Chem B, 2005. 109(19): p. 9216-9225.
96. Long, D., F. Lu, R. Zhang, W. Qiao, L. Zhan, X. Liang, and L. Ling, Suspension assisted synthesis of triblock copolymer-templated ordered mesoporous carbon spheres with controlled particle size. Chem Commun (Camb), 2008(23): p. 2647-2649.
97. Guo, B., X. Wang, P.F. Fulvio, M. Chi, S.M. Mahurin, X.G. Sun, and S. Dai, Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv Mater, 2011. 23(40): p. 4661-4666.
98. Wu, Z., Y. Yang, D. Gu, Q. Li, D. Feng, Z. Chen, B. Tu, P.A. Webley, and D. Zhao, Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route. Small, 2009. 5(23): p. 2738-2749.
99. Stein, A., Z. Wang, and M.A. Fierke, Functionalization of Porous Carbon Materials with Designed Pore Architecture. Advanced Materials, 2009. 21(3): p. 265-293.
100. Liang, C., Z. Li, and S. Dai, Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed Engl, 2008. 47(20): p. 3696-3717.
101. Huang, Y., H. Cai, D. Feng, D. Gu, Y. Deng, B. Tu, H. Wang, P.A. Webley, and D. Zhao, One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chemical Communications, 2008(23): p. 2641.
102. Deng, Y., T. Yu, Y. Wan, Y. Shi, Y. Meng, D. Gu, L. Zhang, Y. Huang, C. Liu, X. Wu, and D. Zhao, Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J Am Chem Soc, 2007. 129(6): p. 1690-1697.
103. Wang, J., H.L. Xin, and D. Wang, Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage. Particle & Particle Systems Characterization, 2014. 31(5): p. 515-539.
104. Hu, S., W. Chen, E. Uchaker, J. Zhou, and G. Cao, Mesoporous Carbon Nanofibers Embedded with MoS Nanocrystals for Extraordinary Li-Ion Storage. Chemistry, 2015.
105. Kim, M.S., D. Bhattacharjya, B. Fang, D.S. Yang, T.S. Bae, and J.S. Yu, Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material. Langmuir, 2013. 29(22): p. 6754-6761.
106. Landi, B.J., M.J. Ganter, C.D. Cress, R.A. DiLeo, and R.P. Raffaelle, Carbon nanotubes for lithium ion batteries. Energy & Environmental Science, 2009. 2(6): p. 638-654.
107. Dahn, J.R., T. Zheng, Y. Liu, and J.S. Xue, Mechanisms for Lithium Insertion in Carbonaceous Materials. Science, 1995. 270(5236): p. 590-593.
108. Zheng, T., Y. Liu, E.W. Fuller, S. Tseng, U. von Sacken, and J.R. Dahn, Lithium Insertion in High Capacity Carbonaceous Materials. Journal of The Electrochemical Society, 1995. 142(8): p. 2581-2590.
109. Xing, W., J.S. Xue, and J.R. Dahn, Optimizing Pyrolysis of Sugar Carbons for Use as Anode Materials in Lithium‐Ion Batteries. Journal of The Electrochemical Society, 1996. 143(10): p. 3046-3052.
110. Wang, Q., H. Li, L. Chen, and X. Huang, Monodispersed hard carbon spherules with uniform nanopores. Carbon, 2001. 39(14): p. 2211-2214.
111. Wang, Q., H. Li, L. Chen, and X. Huang, Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ionics, 2002. 152–153: p. 43-50.
112. Wang, S., S. Yata, J. Nagano, Y. Okano, H. Kinoshita, H. Kikuta, and T. Yamabe, A New Carbonaceous Material with Large Capacity and High Efficiency for Rechargeable Li‐Ion Batteries. Journal of The Electrochemical Society, 2000. 147(7): p. 2498-2502.
113. Lee, K.T., J.C. Lytle, N.S. Ergang, S.M. Oh, and A. Stein, Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries. Advanced Functional Materials, 2005. 15(4): p. 547-556.
114. Zheng, T., W.R. McKinnon, and J.R. Dahn, Hysteresis during Lithium Insertion in Hydrogen‐Containing Carbons. Journal of The Electrochemical Society, 1996. 143(7): p. 2137-2145.
115. Ryu, M.-H., K.-N. Jung, K.-H. Shin, K.-S. Han, and S. Yoon, High Performance N-Doped Mesoporous Carbon Decorated TiO2 Nanofibers as Anode Materials for Lithium-Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(16): p. 8092-8098.
116. Wang, Y.G., H.Q. Li, P. He, E. Hosono, and H.S. Zhou, Nano active materials for lithium-ion batteries. Nanoscale, 2010. 2(8): p. 1294-1305.
117. Park, C.M., J.H. Kim, H. Kim, and H.J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews, 2010. 39(8): p. 3115-3141.
118. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chem Mater, 2010. 22(3): p. 587-603.
119. Wang, D.H., D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, and J. Liu, Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-Ion insertion. Acs Nano, 2009. 3(4): p. 907-914.
120. Dey, A.N., Electrochemical Alloying of Lithium in Organic Electrolytes. Journal of The Electrochemical Society, 1971. 118(10): p. 1547-1549.
121. Goward, G.R., N.J. Taylor, D.C.S. Souza, and L.F. Nazar, The true crystal structure of Li17M4 (M=Ge, Sn, Pb)–revised from Li22M5. Journal of Alloys and Compounds, 2001. 329(1–2): p. 82-91.
122. Park, C.M., J.H. Kim, H. Kim, and H.J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev, 2010. 39(8): p. 3115-3141.
123. Grigoriants, I., L. Sominski, H. Li, I. Ifargan, D. Aurbach, and A. Gedanken, The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. Chem Commun (Camb), 2005(7): p. 921-923.
124. Wang, C., G. Du, K. Ståhl, H. Huang, Y. Zhong, and J.Z. Jiang, Ultrathin SnO2 Nanosheets: Oriented Attachment Mechanism, Nonstoichiometric Defects, and Enhanced Lithium-Ion Battery Performances. The Journal of Physical Chemistry C, 2012. 116(6): p. 4000-4011.
125. Zeng, W., F. Zheng, R. Li, Y. Zhan, Y. Li, and J. Liu, Template synthesis of SnO2/alpha-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale, 2012. 4(8): p. 2760-2765.
126. Jeun, J.H., K.Y. Park, D.H. Kim, W.S. Kim, H.C. Kim, B.S. Lee, H. Kim, W.R. Yu, K. Kang, and S.H. Hong, SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability. Nanoscale, 2013. 5(18): p. 8480-8483.
127. Xue, X.Y., B. He, S. Yuan, L.L. Xing, Z.H. Chen, and C.H. Ma, SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes. Nanotechnology, 2011. 22(39): p. 395702.
128. Park, C.M. and K.J. Jeon, Porous structured SnSb/C nanocomposites for Li-ion battery anodes. Chem Commun (Camb), 2011. 47(7): p. 2122-2124.
129. Lee, H.R., H.J. Kim, J.H. Park, and D.H. Yoon, One-pot synthesis of carbon-coated SnO2 nano-composite using hydrothermal method for lithium ion battery application. J Nanosci Nanotechnol, 2013. 13(6): p. 4141-4145.
130. Wang, C.M., W. Xu, J. Liu, J.G. Zhang, L.V. Saraf, B.W. Arey, D. Choi, Z.G. Yang, J. Xiao, S. Thevuthasan, and D.R. Baer, In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett, 2011. 11(5): p. 1874-1880.
131. Morishita, T., T. Hirabayashi, T. Okuni, N. Ota, and M. Inagaki, Preparation of carbon-coated Sn powders and their loading onto graphite flakes for lithium ion secondary battery. Journal of Power Sources, 2006. 160(1): p. 638-644.
132. Wang, Y., I. Djerdj, B. Smarsly, and M. Antonietti, Antimony-Doped SnO2 Nanopowders with High Crystallinity for Lithium-Ion Battery Electrode. Chemistry of Materials, 2009. 21(14): p. 3202-3209.
133. Wu, P., N. Du, H. Zhang, C. Zhai, and D. Yang, Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage. ACS Appl Mater Interfaces, 2011. 3(6): p. 1946-1952.
134. Yan, J., A. Sumboja, E. Khoo, and P.S. Lee, V2O5 loaded on SnO2 nanowires for high-rate li ion batteries. Adv Mater, 2011. 23(6): p. 746-750.
135. Stroppa, D.G., L.A. Montoro, A. Beltran, T.G. Conti, R.O. da Silva, J. Andres, E. Longo, E.R. Leite, and A.J. Ramirez, Unveiling the chemical and morphological features of Sb-SnO2 nanocrystals by the combined use of high-resolution transmission electron microscopy and ab initio surface energy calculations. J Am Chem Soc, 2009. 131(40): p. 14544-14548.
136. Zhu, Z., S. Wang, J. Du, Q. Jin, T. Zhang, F. Cheng, and J. Chen, Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett, 2014. 14(1): p. 153-157.
137. Yu, Y., L. Gu, C. Zhu, P.A. van Aken, and J. Maier, Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc, 2009. 131(44): p. 15984-15985.
138. Xu, J., X. Wang, X. Wang, D. Chen, X. Chen, D. Li, and G. Shen, Three-Dimensional Structural Engineering for Energy-Storage Devices: From Microscope to Macroscope. ChemElectroChem, 2014. 1(6): p. 975-1002.
139. Chirea, M., A. Cruz, C.M. Pereira, and A.F. Silva, Size-Dependent Electrochemical Properties of Gold Nanorods. The Journal of Physical Chemistry C, 2009. 113(30): p. 13077-13087.
140. Arico, A.S., P. Bruce, B. Scrosati, J.-M. Tarascon, and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005. 4(5): p. 366-377.
141. Jiang, C., E. Hosono, and H. Zhou, Nanomaterials for lithium ion batteries. Nano Today, 2006. 1(4): p. 28-33.
142. Hwang, J., S.H. Woo, J. Shim, C. Jo, K.T. Lee, and J. Lee, One-Pot Synthesis of Tin-Embedded Carbon/Silica Nanocomposites for Anode Materials in Lithium-Ion Batteries. ACS Nano, 2013. 7(2): p. 1036-1044.
143. Deng, D. and J.Y. Lee, Hollow Core–Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage. Chemistry of Materials, 2008. 20(5): p. 1841-1846.
144. Han, F., W.-C. Li, M.-R. Li, and A.-H. Lu, Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. Journal of Materials Chemistry, 2012. 22(19): p. 9645-9651.
145. Chu, B. and B.S. Hsiao, Small-Angle X-ray Scattering of Polymers. Chemical Reviews, 2001. 101(6): p. 1727-1762.
146. Su, D.S., Chemistry of energy conversion and storage. ChemSusChem, 2012. 5(3): p. 443-445.
147. Fujimoto, H., Development of efficient carbon anode material for a high-power and long-life lithium ion battery. Journal of Power Sources, 2010. 195(15): p. 5019-5024.
148. Mabuchi, A., K. Tokumitsu, H. Fujimoto, and T. Kasuh, Charge‐Discharge Characteristics of the Mesocarbon Miocrobeads Heat‐Treated at Different Temperatures. Journal of The Electrochemical Society, 1995. 142(4): p. 1041-1046.
149. Endo, M., C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, Recent development of carbon materials for Li ion batteries. Carbon, 2000. 38(2): p. 183-197.
150. Scrosati, B. and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430.
151. Fang, B., M.-S. Kim, J.H. Kim, S. Lim, and J.-S. Yu, Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. Journal of Materials Chemistry, 2010. 20(45): p. 10253-10259.
152. Simon, P.F.W., R. Ulrich, H.W. Spiess, and U. Wiesner, Block Copolymer−Ceramic Hybrid Materials from Organically Modified Ceramic Precursors. Chemistry of Materials, 2001. 13(10): p. 3464-3486.
153. Zhou, H., S. Zhu, M. Hibino, I. Honma, and M. Ichihara, Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance. Advanced Materials, 2003. 15(24): p. 2107-2111.
154. Tirado, J.L., Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Materials Science and Engineering: R: Reports, 2003. 40(3): p. 103-136.
155. Kaskhedikar, N.A. and J. Maier, Lithium Storage in Carbon Nanostructures. Advanced Materials, 2009. 21(25-26): p. 2664-2680.
156. Tokumitsu, K., H. Fujimoto, A. Mabuchi, and T. Kasuh, High capacity carbon anode for Li-ion battery: A theoretical explanation. Carbon, 1999. 37(10): p. 1599-1605.
157. Fu, L.J., H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, and H.Q. Wu, Surface modifications of electrode materials for lithium ion batteries. Solid State Sciences, 2006. 8(2): p. 113-128.
158. Niu, D., Z. Ma, Y. Li, and J. Shi, Synthesis of Core−Shell Structured Dual-Mesoporous Silica Spheres with Tunable Pore Size and Controllable Shell Thickness. Journal of the American Chemical Society, 2010. 132(43): p. 15144-15147.
159. Fang, Y., D. Gu, Y. Zou, Z. Wu, F. Li, R. Che, Y. Deng, B. Tu, and D. Zhao, A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed Engl, 2010. 49(43): p. 7987-7991.
160. Meng, Y., D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, and D. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed Engl, 2005. 44(43): p. 7053-7059.
161. Wan, Y., Y. Shi, and D. Zhao, Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Commun (Camb), 2007(9): p. 897-926.
162. Qiao, Z.-A., B. Guo, A.J. Binder, J. Chen, G.M. Veith, and S. Dai, Controlled Synthesis of Mesoporous Carbon Nanostructures via a “Silica-Assisted” Strategy. Nano Letters, 2013. 13(1): p. 207-212.
163. Liu, H.-J., W.-J. Cui, L.-H. Jin, C.-X. Wang, and Y.-Y. Xia, Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. Journal of Materials Chemistry, 2009. 19(22): p. 3661-3667.
164. Park, J., J. Joo, S.G. Kwon, Y. Jang, and T. Hyeon, Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie International Edition, 2007. 46(25): p. 4630-4660.
165. Yan, Y., F. Zhang, Y. Meng, B. Tu, and D. Zhao, One-step synthesis of ordered mesoporous carbonaceous spheres by an aerosol-assisted self-assembly. Chemical Communications, 2007(27): p. 2867-2869.
166. Maiyalagan, T., A.B.A. Nassr, T.O. Alaje, M. Bron, and K. Scott, Three-dimensional cubic ordered mesoporous carbon (CMK-8) as highly efficient stable Pd electro-catalyst support for formic acid oxidation. Journal of Power Sources, 2012. 211: p. 147-153.
167. Maiyalagan, T., T.O. Alaje, and K. Scott, Highly Stable Pt–Ru Nanoparticles Supported on Three-Dimensional Cubic Ordered Mesoporous Carbon (Pt–Ru/CMK-8) as Promising Electrocatalysts for Methanol Oxidation. The Journal of Physical Chemistry C, 2012. 116(3): p. 2630-2638.
168. Su, F., X.S. Zhao, Y. Wang, J. Zeng, Z. Zhou, and J.Y. Lee, Synthesis of Graphitic Ordered Macroporous Carbon with a Three-Dimensional Interconnected Pore Structure for Electrochemical Applications. The Journal of Physical Chemistry B, 2005. 109(43): p. 20200-20206.
169. Li, Y., Z.-Y. Fu, and B.-L. Su, Hierarchically Structured Porous Materials for Energy Conversion and Storage. Advanced Functional Materials, 2012. 22(22): p. 4634-4667.
170. Wang, H. and A.L. Rogach, Hierarchical SnO2 Nanostructures: Recent Advances in Design, Synthesis, and Applications. Chemistry of Materials, 2014. 26(1): p. 123-133.
171. Wang, C., G. Du, K. Ståhl, H. Huang, Y. Zhong, and J.Z. Jiang, Ultrathin SnO2 Nanosheets: Oriented Attachment Mechanism, Nonstoichiometric Defects, and Enhanced Lithium-Ion Battery Performances. The Journal of Physical Chemistry C, 2012. 116(6): p. 4000-4011.
172. Wang, G., B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, and K. Kim, Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry, 2009. 19(44): p. 8378.
173. Zhang, L.-S., L.-Y. Jiang, H.-J. Yan, W.D. Wang, W. Wang, W.-G. Song, Y.-G. Guo, and L.-J. Wan, Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. Journal of Materials Chemistry, 2010. 20(26): p. 5462.
174. Chen, Z., Y. Cao, J. Qian, X. Ai, and H. Yang, Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. Journal of Materials Chemistry, 2010. 20(34): p. 7266-7271.
175. Yoon, S. and A. Manthiram, Nanoengineered Sn–TiC–C composite anode for lithium ion batteries. J. Mater. Chem., 2010. 20(2): p. 236-239.
176. Lee, K.T., Y.S. Jung, and S.M. Oh, Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J Am Chem Soc, 2003. 125(19): p. 5652-5653.
177. Hassoun, J., G. Derrien, S. Panero, and B. Scrosati, A Nanostructured Sn-C Composite Lithium Battery Electrode with Unique Stability and High Electrochemical Performance. Advanced Materials, 2008. 20(16): p. 3169-3175.
178. Han, F., W.-C. Li, M.-R. Li, and A.-H. Lu, Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. Journal of Materials Chemistry, 2012. 22(19): p. 9645.
179. Mouyane, M., J.M. Ruiz, M. Artus, S. Cassaignon, J.P. Jolivet, G. Caillon, C. Jordy, K. Driesen, J. Scoyer, L. Stievano, J. Olivier-Fourcade, and J.C. Jumas, Carbothermal synthesis of Sn-based composites as negative electrode for lithium-ion batteries. Journal of Power Sources, 2011. 196(16): p. 6863-6869.
180. Wen, Z., Q. Wang, Q. Zhang, and J. Li, In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes: A Novel Composite with Porous-Tube Structure as Anode for Lithium Batteries. Advanced Functional Materials, 2007. 17(15): p. 2772-2778.
181. Zou, Y. and Y. Wang, Sn@CNT Nanostructures Rooted in Graphene with High and Fast Li-Storage Capacities. ACS Nano, 2011. 5(10): p. 8108-8114.
182. Zhou, Q., L. Yang, G. Wang, and Y. Yang, Acetylcholinesterase biosensor based on SnO2 nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Biosens Bioelectron, 2013. 49: p. 25-31.
183. Zhuang, Z., F. Huang, Z. Lin, and H. Zhang, Aggregation-induced fast crystal growth of SnO2 nanocrystals. J Am Chem Soc, 2012. 134(39): p. 16228-16234.
184. Zhou, X., L.J. Wan, and Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater, 2013. 25(15): p. 2152-2157.
185. Roopan, S.M., S.H. Kumar, G. Madhumitha, and K. Suthindhiran, Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2). Appl Biochem Biotechnol, 2015. 175(3): p. 1567-1575.
186. Zhou, N., C. Ye, L. Polavarapu, and Q.H. Xu, Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing. Nanoscale, 2015. 7(19): p. 9025-9032.
187. Stroppa, D.G., L.A. Montoro, A. Beltran, T.G. Conti, R.O. da Silva, J. Andres, E.R. Leite, and A.J. Ramirez, Dopant segregation analysis on Sb:SnO2 nanocrystals. Chemistry, 2011. 17(41): p. 11515-11519.
188. Alizadeh, R., N.M. Najafi, and E.M. Poursani, Arrays of SnO2 nanorods as novel solid phase microextraction for trace analysis of antidepressant drugs in body fluids. J Pharm Biomed Anal, 2012. 70: p. 492-498.
189. He, J.H., T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, and Z.L. Wang, Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small, 2006. 2(1): p. 116-120.
190. Chen, L.Y., W.D. Zhang, B. Xu, and Y.X. Yu, A facile hydrothermal strategy for synthesis of SnO2 nanorods-graphene nanocomposites for high performance photocatalysis. J Nanosci Nanotechnol, 2012. 12(9): p. 6921-6929.
191. Zhang, D.F., L.D. Sun, C.J. Jia, Z.G. Yan, L.P. You, and C.H. Yan, Hierarchical assembly of SnO2 nanorod arrays on alpha-Fe2O3 nanotubes: a case of interfacial lattice compatibility. J Am Chem Soc, 2005. 127(39): p. 13492-13493.
192. Zhao, B., B. Fan, G. Shao, W. Zhao, and R. Zhang, Facile Synthesis of Novel Heterostructure Based on SnO2 Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities. ACS Appl Mater Interfaces, 2015. 7(33): p. 18815-18823.
193. Zhang, L., K. Zhao, W. Xu, Y. Dong, R. Xia, F. Liu, L. He, Q. Wei, M. Yan, and L. Mai, Integrated SnO2 nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries. Phys Chem Chem Phys, 2015. 17(12): p. 7619-7623.
194. Huang, H., S. Tian, J. Xu, Z. Xie, D. Zeng, D. Chen, and G. Shen, Needle-like Zn-doped SnO2 nanorods with enhanced photocatalytic and gas sensing properties. Nanotechnology, 2012. 23(10): p. 105502.
195. Xie, M., X. Sun, S.M. George, C. Zhou, J. Lian, and Y. Zhou, Amorphous Ultrathin SnO2 Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium Ion Batteries. ACS Appl Mater Interfaces, 2015.
196. Sanon, G., R. Rup, and A. Mansingh, Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films. Phys Rev B Condens Matter, 1991. 44(11): p. 5672-5680.
197. Green, A.N., E. Palomares, S.A. Haque, J.M. Kroon, and J.R. Durrant, Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. J Phys Chem B, 2005. 109(25): p. 12525-12533.
198. Shao, S., M. Dimitrov, N. Guan, and R. Kohn, Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2. Nanoscale, 2010. 2(10): p. 2054-2057.
199. Giraldi, T.R., C. Ribeiro, M.T. Escote, T.G. Conti, A.J. Chiquito, E.R. Leite, E. Longo, and J.A. Varela, Deposition of controlled thickness ultrathin SnO2:Sb films by spin-coating. J Nanosci Nanotechnol, 2006. 6(12): p. 3849-3853.
200. Henry, J., K. Mohanraj, G. Sivakumar, and S. Umamaheswari, Electrochemical and fluorescence properties of SnO2 thin films and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc, 2015. 143: p. 172-178.
201. Viana, E.R., J.C. Gonzalez, G.M. Ribeiro, and A.G. de Oliveira, Electrical observation of sub-band formation in SnO2 nanobelts. Nanoscale, 2013. 5(14): p. 6439-6444.
202. Kolmakov, A., D.O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett, 2005. 5(4): p. 667-673.
203. Xing, L.L., S. Yuan, Z.H. Chen, Y.J. Chen, and X.Y. Xue, Enhanced gas sensing performance of SnO2/alpha-MoO3 heterostructure nanobelts. Nanotechnology, 2011. 22(22): p. 225502.
204. Cheng, Y., P. Xiong, C.S. Yun, G.F. Strouse, J.P. Zheng, R.S. Yang, and Z.L. Wang, Mechanism and optimization of pH sensing using SnO2 nanobelt field effect transistors. Nano Lett, 2008. 8(12): p. 4179-4184.
205. Xiang, D.G., J. Su, A.Q. Zhang, Y.H. Gao, X.Y. Han, M. Sun, X.H. Zhang, G.Z. Shen, D. Chen, L. Jin, and J.B. Wang, Microstructure and photoluminescence studies of Sb-doped SnO2 zigzag nanobelts. J Nanosci Nanotechnol, 2010. 10(10): p. 6629-6633.
206. Duan, J., S. Yang, H. Liu, J. Gong, H. Huang, X. Zhao, R. Zhang, and Y. Du, Single crystal SnO2 zigzag nanobelts. J Am Chem Soc, 2005. 127(17): p. 6180-6181.
207. Lu, N., Q. Wan, Y. Shi, and J. Zhu, Synthesis and structural characterization of single crystalline zigzag SnO2 nanobelts. J Nanosci Nanotechnol, 2010. 10(11): p. 7787-7790.
208. Wang, X., N. Aroonyadet, Y. Zhang, M. Mecklenburg, X. Fang, H. Chen, E. Goo, and C. Zhou, Aligned epitaxial SnO2 nanowires on sapphire: growth and device applications. Nano Lett, 2014. 14(6): p. 3014-3022.
209. Woo, H.W., Y.J. Kwon, H.Y. Cho, and H.G. Na, Attachment of metal nanoparticles to SnO2 nanowires for enhancement of gas sensing properties. J Nanosci Nanotechnol, 2014. 14(11): p. 8242-8247.
210. Lim, T., S.Y. Ryu, and S. Ju, Direct growth of SnO2 nanowires on WOx thin films. Nanotechnology, 2012. 23(48): p. 485702.
211. Lee, S.H., G. Jo, W. Park, S. Lee, Y.S. Kim, B.K. Cho, T. Lee, and W. Bae Kim, Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps. ACS Nano, 2010. 4(4): p. 1829-1836.
212. Wan, Q., E. Dattoli, and W. Lu, Doping-dependent electrical characteristics of SnO2 nanowires. Small, 2008. 4(4): p. 451-454.
213. Jin, Z., G.T. Fei, X.L. Cao, and X.W. Wang, Fabrication and optical properties of mesoporous SnO2 nanowire arrays. J Nanosci Nanotechnol, 2010. 10(8): p. 5471-5474.
214. Zhang, L., S. Ge, H. Zhang, and Y. Zuo, Ferromagnetism driven by oxygen vacancies in SnO2 nanowires. J Nanosci Nanotechnol, 2010. 10(8): p. 4936-4942.
215. Guan, C., X. Wang, Q. Zhang, Z. Fan, H. Zhang, and H.J. Fan, Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett, 2014. 14(8): p. 4852-4858.
216. Sub Kim, S., H. Gil Na, H. Woo Kim, V. Kulish, and P. Wu, Promotion of acceptor formation in SnO2 nanowires by e-beam bombardment and impacts to sensor application. Sci Rep, 2015. 5: p. 10723.
217. Zhang, D.F., L.D. Sun, G. Xu, and C.H. Yan, Size-controllable one-dimensional SnO2 nanocrystals: synthesis, growth mechanism, and gas sensing property. Phys Chem Chem Phys, 2006. 8(42): p. 4874-4880.
218. Palmer, D.A., R.J. Fernández-Prini, A.H. Harvey, W. International Association for the Properties of, and Steam. Aqueous systems at elevated temperatures and pressures physical chemistry in water, steam and hydrothermal solutions. 2004; 1st:[xii, 753 p.].
219. Saravanan, K., K. Ananthanarayanan, and P. Balaya, Mesoporous TiO2 with high packing density for superior lithium storage. Energ Environ Sci, 2010. 3(7): p. 939-948.
220. Liang, C.D., Z.J. Li, and S. Dai, Mesoporous carbon materials: Synthesis and modification. Angewandte Chemie-International Edition, 2008. 47(20): p. 3696-3717.
221. Huang, C.H., R.A. Doong, D. Gu, and D.Y. Zhao, Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. Carbon, 2011. 49(9): p. 3055-3064.
222. Huang, C.H. and R.A. Doong, Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly. Micropor Mesopor Mat, 2011: p. DOI:10.1016/j.micromeso.2011.1005.1027.
223. Fang, B., M.S. Kim, J.H. Kim, S. Lim, and J.S. Yu, Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. J Mater Chem, 2010. 20(45): p. 10253-10259.
224. Ji, L.W., Z. Lin, M. Alcoutlabi, and X.W. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energ Environ Sci, 2011. 4(8): p. 2682-2699.
225. Huang, C.H., D. Gu, D.Y. Zhao, and R.A. Doong, Direct synthesis of controllable microstructures of thermally stable and ordered mesoporous crystalline titanium oxides and carbide/carbon composites. Chem Mater, 2010. 22(5): p. 1760-1767.
226. Zhang, F.Q., Y. Meng, D. Gu, Y. Yan, Z.X. Chen, B. Tu, and D.Y. Zhao, An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chem Mater, 2006. 18(22): p. 5279-5288.
227. Liu, R.L., Y.F. Shi, Y. Wan, Y. Meng, F.Q. Zhang, D. Gu, Z.X. Chen, B. Tu, and D.Y. Zhao, Triconstituent Co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. Journal of the American Chemical Society, 2006. 128(35): p. 11652-11662.
228. Chang, P.-y., C.-h. Huang, and R.-a. Doong, Ordered mesoporous carbon–TiO2 materials for improved electrochemical performance of lithium ion battery. Carbon, 2012. 50(11): p. 4259-4268.
229. Bazargan, A., Y. Yan, C.W. Hui, and G. McKay, A Review: Synthesis of Carbon-Based Nano and Micro Materials by High Temperature and High Pressure. Industrial & Engineering Chemistry Research, 2013. 52(36): p. 12689-12702.
230. Sun, B., Q. Jin, L. Tan, P. Wu, and F. Yan, Trace of the Interesting “V”-Shaped Dynamic Mechanism of Interactions between Water and Ionic Liquids. The Journal of Physical Chemistry B, 2008. 112(45): p. 14251-14259.
231. Liu, H., D. Long, X. Liu, W. Qiao, L. Zhan, and L. Ling, Facile synthesis and superior anodic performance of ultrafine SnO2-containing nanocomposites. Electrochimica Acta, 2009. 54(24): p. 5782-5788.