簡易檢索 / 詳目顯示

研究生: 林傑升
Chieh-Sheng Lin
論文名稱: 金屬奈米線異向性導電膜覆晶構裝於熱壓合製程之熱機械分析
Thermal-mechanical Analysis of Metal Nanowire-based ACF Flip Chip Packaging During Bonding Process
指導教授: 陳文華
Wen-Hwa Chen
鄭仙志
Hsien-Chie Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 74
中文關鍵詞: 金屬奈米線異向性導電膜暫態熱傳接觸力學熱電耦雲紋干涉
外文關鍵詞: metal nanowire, anisotropic conductive film, transient heat transfer, contact mechanics, thermal couple, laser Moir□
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    新一代電子構裝產品朝高密度、輕薄及微小化發展,為一必然之趨勢。金屬奈米線異向性導電膜(Anisotropic Conductive Film, ACF)覆晶構裝乃一可適用於超細間距之構裝形態。此一嶄新之技術,在製程中仍有許多技術尚待探討,例如熱壓合製程之熱機械行為等,值得吾人深入研究。
    本論文首先利用ANSYS分析套裝軟體建立一三維有限單元暫態熱機械分析模型,配合暫態熱傳及接觸力學分析,以對金屬奈米線ACF覆晶構裝熱壓合製程之熱機械行為進行模擬計算,包括凸塊及電極上之接觸應力、非導電性黏著劑(Non-conductive Paste,NCP)與不同材料介面間之剝離應力及整體構裝之翹曲變形等。此建立之三維有限單元熱機械分析模型並以熱電耦及雲紋干涉實驗驗證其正確性。最後,針對相關製程參數對於構裝熱機械行為影響進行參數化分析。
    本論文獲得之成果,不但有助於對金屬奈米線ACF覆晶構裝熱壓合製程熱機械行為之暸解,並可藉由參數化分析,以供構裝業者進行構裝設計之參考。


    ABSTRACT
    Nowadays, electronic devices are being pushed toward high density, lightweight and miniaturization. Metal nanowire-based anisotropic conductive film (ACF) flip chip (FC) packaging technology can be applied to ultra fine pitch interconnection. However, metal nanowire-based ACF FC packaging, as a new technology, still has many technical challenges remaining in concern, such as the thermal-mechanical behavior of this packaging during the thermal bonding process in manufacture sequences. These features of the Metal nanowire-based ACF FC packaging in this research work worth further study.
    Using transient heat transfer and contact analysis models, this study is first to establish a three-dimensional finite element transient thermal-mechanical analysis model with ANSYS program. Continuously, an integrated process-dependent analysis including the contact stress on the bumps and electrodes, the peeling stress at the different interfaces of the non-conductive past (NCP) and surrounding materials and the warpage of the packaging is provided. The validity of the thermal-mechanical analysis model is verified by thermal couple and laser Moir□ experiments for warpage measurement. At last, this study explores the effect of related process parameters on the thermal-mechanical behaviors of this packaging through parametric analysis.
    The achievement of this study can help us to understand the thermal-mechanical behavior of this metal nanowire-based ACF FC packaging during thermal bonding process, also offer an initial design stage for electronic packaging industry.

    目錄 摘要 I 表目錄 VI 圖目錄 VII 一、導論 1 二、金屬奈米線異向性導電膜覆晶構裝熱壓合製程 4 三、金屬奈米線ACF等效材料常數計算 6 3.1 材料混合法則(Rules of Mixture) 6 3.2 熱膨脹係數分析 9 3.3 有限單元法模擬 9 四、三維有限單元暫態熱傳分析 13 4.1 暫態熱傳分析 13 4.2 三維有限單元網格 14 4.3 熱傳分析邊界條件 15 五、三維有限單元接觸力學分析 16 5.1 接觸力學分析 16 5.2 三維有限單元網格 16 5.3 網格生死模擬技術 17 5.4 有限體積加權平均法 17 六、實驗量測 19 6.1 熱電耦實驗 19 6.1.1 熱電耦實驗原理 19 6.1.2 熱電耦實驗設備 19 6.1.3 熱電耦實驗步驟 19 6.2 雲紋干涉實驗 20 6.2.1 雲紋干涉原理 20 6.2.2 雲紋干涉實驗設備 22 6.2.3 雲紋干涉實驗步驟 22 七、結果與討論 24 7.1 金屬奈米線ACF等效材料常數 24 7.2 熱電耦實驗驗證 24 7.3 雲紋干涉實驗驗證 25 7.4 熱壓合製程分析 25 7.5 參數分析 28 八、結論與未來展望 33 九、參考文獻 35 表目錄 表一、重要元件幾何尺寸 38 表二、元件材料性質 38 表三、Ellison(1989)熱對流模型相關參數 39 表四、雲紋干涉實驗結果比較(相對位移) 39 圖目錄 圖一、金屬奈米線ACF剖面圖 40 圖二、金屬奈米線ACF覆晶構裝結構示意圖 41 圖三、金屬奈米線ACF覆晶構裝實體圖 42 圖四、等效楊氏模數計算 43 圖五、等效熱傳導係數計算 44 圖六、金屬奈米線ACF簡化結構單元切割圖 45 圖七、三維有限單元暫態熱傳分析網格 46 圖八、三維有限單元接觸力學分析網格 47 圖九、熱電偶實驗圖 48 圖十、熱電偶埋設位置示意圖 49 圖十一、雲紋干涉儀實體圖 50 圖十二、雲紋干涉實驗儀器架設圖 51 圖十三、雲紋干涉儀光路示意圖 52 圖十四、銀奈米線體積比與ACF等效楊氏模數關係 53 圖十五、銀奈米線體積比與ACF等效浦松比關係 54 圖十六、銀奈米線體積比與ACF等效熱傳導係數關係 55 圖十七、銀奈米線體積比與ACF等效熱膨脹係數關係 56 圖十八、溫度變化曲線 57 圖十九、金屬奈米線ACF覆晶構裝體之雲紋干涉實驗及有限單元分析結果比較 58 圖二十、構裝體熱傳模擬等溫線分佈圖(t=15sec.) 59 圖二十一、構裝剖面部份位置溫度之暫態變化圖 60 圖二十二、不同介面上接觸總力與熱壓合步驟關係 61 圖二十三、不同凸塊之接觸應力分佈 62 圖二十四、NCP之剝離應力分佈 63 圖二十五、基板下表面翹曲量與位置關係 64 圖二十六、金屬奈米線ACF覆晶構裝體於卸載後之三維變形圖 65 圖二十七、不同參數對凸塊接觸應力之影響 66 圖二十八、不同參數對NCP剝離應力之影響 67 圖二十九、不同參數對構裝體最大翹曲量之影響 68 圖三十、材料楊氏模數對構裝體最大翹曲量之影響 69 圖三十一、材料熱膨脹係數對構裝體最大翹曲量之影響 70 圖三十二、不同基板材料對構裝體最大翹曲量之關係 71 圖三十三、不同基板材料對凸塊接觸應力之關係 72 圖三十四、不同基板材料對NCP剝離應力之關係 73 圖三十五、構裝體溫度與凸塊接觸應力關係 74

    [1] Bansal, S., Toimil¬Molares, E., Saxena, A., Tummala, R.R., 2005, “Nanoindentation of Single Crystal and Polycrystalline Copper Nanowires,” Electronic Components and Technology, EPTC'05. Proceedings, pp. 71-76.
    [2] Banerji, S., Raj, P.M., Bhattacharya, S., Tummala, R.R., 2005, “Warpage-induced lithographic limitations of FR-4 and the need for novel board materials for future microvia and global interconnect needs,” IEEE Transactions on Advanced Packaging, Volume 28, pp. 102-113.
    [3] B□hm, H.J., Degischer, H.P., Lacom, W., Qu, J., ., 1995, “Experimental and theoretical study of the thermal expansion behavior of aluminium reinforced by continuous ceramic fibers,” Composites Engineering, Volume 5, No. 1, pp. 37-49.
    [4] Boresi, P.B., Chong, K.P., 2000, “Elasticity in Engineering Mechanics,” John Wiley & Sons, Inc., NY.
    [5] Doraiswami, R., Tummala, R., 2005, “Nano¬Composite Lead¬Free Interconnect and Reliability,” Electronic Components and Technology, EPTC'05. Proceedings, pp. 871-873.
    [6] Chen, W.H., Cheng, H.C., Shen, H.A., 2003, “An effective Methodology for Thermal Characterization of Electronic Packaging,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 1, March, pp. 222-232.
    [7] Ellison, G.N., 1989, “Thermal Computations for Electronic Equipment,” R. E. Krieger Publishing Company, Malabar, FL.
    [8] Gere, J.M., 2001, “Mechanics of Materoals,” Brooks/Cole Thomson Learning., CA.
    [9] Ho, C.L., 2004, "Thermal-Mechanical Analysis of Chip-on-Glass Electronic Packaging," Master thesis, National Feng-Chia University.
    [10] Ishibashi, K. and Kimura, J., 1996, “A New Anisotropic Conductive Film with Arraryed Conductive Particles,” AMP J. of Tech.,Vol.5,pp.24-30.
    [11] Lieber, C.M., Cui, Y., Wei, Q., Park, H., 2001, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, Vol 293, pp. 1289-1292.
    [12] Lin, R.J., Hsu, Y.Y., Fan, R.C., Chen, Y.C., Cheng, S.Y., Huang, C.T., Uang, R.H., 2004, “Design of Nanowire Anisotropic Conductive Film for Ultra-fine Pitch Flip Chip Interconnection,” EPTC, pp. 120-125.
    [13] Lin, R.J., Hsu, Y.Y., Chen, Y.C., Cheng, S.Y., Huang, C.T., Uang, R.H., 2005, “Fabrication of Nanowire Anisotropic Conductive Film for Ultra-fine Pitch Flip Chip Interconnection,” EPTC, pp. 66-67.
    [14] Liu, C.M., Lee, C.C. Chiang, K.N., 2006, “Enhancing the Reliability of Wafer Level Packaging by Using Solder Joints Layout Design,” Components and Packaging Technologies, IEEE, Vol. 29 pp. 877-885.
    [15] Martin, C.R. and Menon V.P., 1995, “Fabrication and Evaluation of Nanoelectrode Ensembles,” Anal. Chem Vol. 67, pp. 1920-1928.
    [16] Ridsdale, G., Joiner, B., Bigler, J., Torres, V.M., “Thermal simulation to analyze design features of plastic quad flat package,” J. Microcirc. Electron. Packag., vol. 19, pp. 103–109, 1996.
    [17] Ronald F. Gibson., 1994, “Principles of Composite Material Mechanics,” McGraw-Hill Book Co.
    [18] Russell, T.P., Thurn-Albrecht, T., Schotter, J., Kastle, G.A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C.T., Tuominen, M.T., 2000, “Ultra-high Density Nanowire Array Grown in Self-assembled Di-block Copolymer Template,” Science. Vol. 290, pp. 2126-2129.
    [19] Souriau, J.S., Brun, J., Franiatte, R. and Gasse, A., 2004, “Development on Wafer-level Anisotropic Conductive Film for Flip-chip Interconnection, ” Proc 54th Electronic Components and Technology Conf, pp. 155-158.
    [20] Schapery, R.A., 1968, “Thermal Expansion Coefficients of Composite Material Based on Energy Principles, ” J. Compos. Mater. 2, pp. 380-404.
    [21] Xu, J.M., Yin, A. J., Li, J., Jian, W., Bennett, A.J., 2001, “Fabrication of Highly Ordered Metallic Nanowire arrays by Electrodeposition,” Appl. Phys. Lett. Vol.290, pp1039-2129.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE