研究生: |
林傑升 Chieh-Sheng Lin |
---|---|
論文名稱: |
金屬奈米線異向性導電膜覆晶構裝於熱壓合製程之熱機械分析 Thermal-mechanical Analysis of Metal Nanowire-based ACF Flip Chip Packaging During Bonding Process |
指導教授: |
陳文華
Wen-Hwa Chen 鄭仙志 Hsien-Chie Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 金屬奈米線 、異向性導電膜 、暫態熱傳 、接觸力學 、熱電耦 、雲紋干涉 |
外文關鍵詞: | metal nanowire, anisotropic conductive film, transient heat transfer, contact mechanics, thermal couple, laser Moir□ |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
新一代電子構裝產品朝高密度、輕薄及微小化發展,為一必然之趨勢。金屬奈米線異向性導電膜(Anisotropic Conductive Film, ACF)覆晶構裝乃一可適用於超細間距之構裝形態。此一嶄新之技術,在製程中仍有許多技術尚待探討,例如熱壓合製程之熱機械行為等,值得吾人深入研究。
本論文首先利用ANSYS分析套裝軟體建立一三維有限單元暫態熱機械分析模型,配合暫態熱傳及接觸力學分析,以對金屬奈米線ACF覆晶構裝熱壓合製程之熱機械行為進行模擬計算,包括凸塊及電極上之接觸應力、非導電性黏著劑(Non-conductive Paste,NCP)與不同材料介面間之剝離應力及整體構裝之翹曲變形等。此建立之三維有限單元熱機械分析模型並以熱電耦及雲紋干涉實驗驗證其正確性。最後,針對相關製程參數對於構裝熱機械行為影響進行參數化分析。
本論文獲得之成果,不但有助於對金屬奈米線ACF覆晶構裝熱壓合製程熱機械行為之暸解,並可藉由參數化分析,以供構裝業者進行構裝設計之參考。
ABSTRACT
Nowadays, electronic devices are being pushed toward high density, lightweight and miniaturization. Metal nanowire-based anisotropic conductive film (ACF) flip chip (FC) packaging technology can be applied to ultra fine pitch interconnection. However, metal nanowire-based ACF FC packaging, as a new technology, still has many technical challenges remaining in concern, such as the thermal-mechanical behavior of this packaging during the thermal bonding process in manufacture sequences. These features of the Metal nanowire-based ACF FC packaging in this research work worth further study.
Using transient heat transfer and contact analysis models, this study is first to establish a three-dimensional finite element transient thermal-mechanical analysis model with ANSYS program. Continuously, an integrated process-dependent analysis including the contact stress on the bumps and electrodes, the peeling stress at the different interfaces of the non-conductive past (NCP) and surrounding materials and the warpage of the packaging is provided. The validity of the thermal-mechanical analysis model is verified by thermal couple and laser Moir□ experiments for warpage measurement. At last, this study explores the effect of related process parameters on the thermal-mechanical behaviors of this packaging through parametric analysis.
The achievement of this study can help us to understand the thermal-mechanical behavior of this metal nanowire-based ACF FC packaging during thermal bonding process, also offer an initial design stage for electronic packaging industry.
[1] Bansal, S., Toimil¬Molares, E., Saxena, A., Tummala, R.R., 2005, “Nanoindentation of Single Crystal and Polycrystalline Copper Nanowires,” Electronic Components and Technology, EPTC'05. Proceedings, pp. 71-76.
[2] Banerji, S., Raj, P.M., Bhattacharya, S., Tummala, R.R., 2005, “Warpage-induced lithographic limitations of FR-4 and the need for novel board materials for future microvia and global interconnect needs,” IEEE Transactions on Advanced Packaging, Volume 28, pp. 102-113.
[3] B□hm, H.J., Degischer, H.P., Lacom, W., Qu, J., ., 1995, “Experimental and theoretical study of the thermal expansion behavior of aluminium reinforced by continuous ceramic fibers,” Composites Engineering, Volume 5, No. 1, pp. 37-49.
[4] Boresi, P.B., Chong, K.P., 2000, “Elasticity in Engineering Mechanics,” John Wiley & Sons, Inc., NY.
[5] Doraiswami, R., Tummala, R., 2005, “Nano¬Composite Lead¬Free Interconnect and Reliability,” Electronic Components and Technology, EPTC'05. Proceedings, pp. 871-873.
[6] Chen, W.H., Cheng, H.C., Shen, H.A., 2003, “An effective Methodology for Thermal Characterization of Electronic Packaging,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 1, March, pp. 222-232.
[7] Ellison, G.N., 1989, “Thermal Computations for Electronic Equipment,” R. E. Krieger Publishing Company, Malabar, FL.
[8] Gere, J.M., 2001, “Mechanics of Materoals,” Brooks/Cole Thomson Learning., CA.
[9] Ho, C.L., 2004, "Thermal-Mechanical Analysis of Chip-on-Glass Electronic Packaging," Master thesis, National Feng-Chia University.
[10] Ishibashi, K. and Kimura, J., 1996, “A New Anisotropic Conductive Film with Arraryed Conductive Particles,” AMP J. of Tech.,Vol.5,pp.24-30.
[11] Lieber, C.M., Cui, Y., Wei, Q., Park, H., 2001, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, Vol 293, pp. 1289-1292.
[12] Lin, R.J., Hsu, Y.Y., Fan, R.C., Chen, Y.C., Cheng, S.Y., Huang, C.T., Uang, R.H., 2004, “Design of Nanowire Anisotropic Conductive Film for Ultra-fine Pitch Flip Chip Interconnection,” EPTC, pp. 120-125.
[13] Lin, R.J., Hsu, Y.Y., Chen, Y.C., Cheng, S.Y., Huang, C.T., Uang, R.H., 2005, “Fabrication of Nanowire Anisotropic Conductive Film for Ultra-fine Pitch Flip Chip Interconnection,” EPTC, pp. 66-67.
[14] Liu, C.M., Lee, C.C. Chiang, K.N., 2006, “Enhancing the Reliability of Wafer Level Packaging by Using Solder Joints Layout Design,” Components and Packaging Technologies, IEEE, Vol. 29 pp. 877-885.
[15] Martin, C.R. and Menon V.P., 1995, “Fabrication and Evaluation of Nanoelectrode Ensembles,” Anal. Chem Vol. 67, pp. 1920-1928.
[16] Ridsdale, G., Joiner, B., Bigler, J., Torres, V.M., “Thermal simulation to analyze design features of plastic quad flat package,” J. Microcirc. Electron. Packag., vol. 19, pp. 103–109, 1996.
[17] Ronald F. Gibson., 1994, “Principles of Composite Material Mechanics,” McGraw-Hill Book Co.
[18] Russell, T.P., Thurn-Albrecht, T., Schotter, J., Kastle, G.A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C.T., Tuominen, M.T., 2000, “Ultra-high Density Nanowire Array Grown in Self-assembled Di-block Copolymer Template,” Science. Vol. 290, pp. 2126-2129.
[19] Souriau, J.S., Brun, J., Franiatte, R. and Gasse, A., 2004, “Development on Wafer-level Anisotropic Conductive Film for Flip-chip Interconnection, ” Proc 54th Electronic Components and Technology Conf, pp. 155-158.
[20] Schapery, R.A., 1968, “Thermal Expansion Coefficients of Composite Material Based on Energy Principles, ” J. Compos. Mater. 2, pp. 380-404.
[21] Xu, J.M., Yin, A. J., Li, J., Jian, W., Bennett, A.J., 2001, “Fabrication of Highly Ordered Metallic Nanowire arrays by Electrodeposition,” Appl. Phys. Lett. Vol.290, pp1039-2129.