研究生: |
萬瑋琳 Wan, Wei-Lin |
---|---|
論文名稱: |
原位產氫系統調控氧化壓力 In Situ H2-Evolving Systems for Mitigating Oxidative Stress |
指導教授: |
宋信文
Sung, Hsing-Wen |
口試委員: |
葉晨聖
Yeh, Chen-Sheng 何佳安 Ho, Ja-an Annie 張燕 Chang, Yen 林滄城 呂瑞梅 蘇慕寰 Su, Muh-Hwan |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 氫氣 、活性氧化物質 、光合作用 、奈米反應器 、上轉換奈米粒子 、金奈米粒子 、診療 、鎂 、骨關節炎 |
外文關鍵詞: | hydrogen gas, reactive oxygen species, photosynthesis, nanoreactor, upconversion nanoparticle, gold nanoparticle, theranostics, magnesium, osteoarthritis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發炎反應在人類許多疾病中起著關鍵作用,這些疾病都涉及活性氧化物質的過量產生。氫氣是一種治療性醫療氣體,安全且無副作用。氫氣可以選擇性的清除具細胞毒性的活性氧化物質,而不影響其他活性氧化物質,保有其正常生理訊號調節,重建活性氧化物質的恆定。然而,透過傳統遞送氫氣的方式,氫氣的量可能不足以清除在發炎組織中過量產生的活性氧化物質。因此,透過局部遞送氫氣可以克服上述困難。在第一部分研究中,受自然界光合作用的啟發,光合奈米反應器鑲嵌有葉綠素a,包覆著L-抗壞血酸和金奈米粒子,光照下可以產生具有生物治療性的氫氣用以減輕局部發炎反應。以光合產氫的奈米反應器降低了巨噬細胞內活性氧化物質和促炎細胞因子的過量表現,降低小鼠發炎組織的氧化壓力。為了增加治療深度並降低生物組織中的光毒性,在第二部份研究中,結合上轉換奈米粒子製備出具有偵測及降低氧化壓力的奈米平台。通過具有活性氧化物質響應的化合物將上轉換奈米粒子與金奈米粒子結合形成奈米複合物,將其包覆於鑲嵌有葉綠素a的奈米平台中。奈米平台作為光捕獲之天線,集診斷、治療和評估治療效果,可同時成像和原位治療。然而,為了治療如骨關節炎的慢性疾病,需要一種能夠在患部中連續提供高治療濃度的氫氣系統,在第三部分研究中提出的遞送系統為包覆有鎂粉的聚乳酸乙醇酸微粒。在小鼠骨關節炎模型中以肌肉注射方式注射包覆有鎂粉的聚乳酸乙醇酸微粒於患部附近,其可以透過在體液中鎂的鈍化/活化循環而連續地釋放氫氣,結果顯示,包覆有鎂粉的聚乳酸乙醇酸微粒可有效緩解組織發炎並防止軟骨降解,減緩骨關節炎的進程。這些分析結果證明了以上三種氫氣遞送系統提供多功能治療診斷平台用以治療疾病的可行性。
Inflammation has a critical role in the onset of many human diseases, all of which involve the disturbance of reactive oxygen species (ROS) homeostasis. Hydrogen (H2) is a therapeutic medical gas, regarding to be safe and no side-effects. H2 can selectively scavenge highly cytotoxic ROS while preserve other essential ROS for normal signaling regulation, reestablishing ROS homeostasis. However, the amount of H2 that is absorbed by the body through the traditional approaches may not suffice to scavenge the ROS that is overproduced in inflamed tissues. Thus, local delivery of H2 gas may overcome the above difficulty. Inspired by natural photosynthesis, the photo-driven nanoreactor (NR) that comprises chlorophyll a (Chla), L-ascorbic acid, and gold nanoparticles (AuNPs) that are encapsulated in a liposomal (Lip) system that can produce H2 gas with therapeutic concentration in situ upon photon absorption to mitigate inflammatory responses is proposed in the first study. This photo-driven NR system reduces the degrees of overproduction of ROS and pro-inflammatory cytokines both in vitro in RAW264.7 cells and in vivo in mice with paw inflammation that is induced by lipopolysaccharide. Experimental results indicate that the Lip NR system that can photosynthesize H2 gas has great potential for mitigating oxidative stress in tissue inflammation. To increase the therapeutic depth and minimize the phototoxicity in biological tissues, an NIR-to-vis-driven H2-evolving Lip nanoplatform (Lip NP) is proposed in the second study. An upconversion nanoparticle that is conjugated with AuNPs via an ROS-responsive linker, which is encapsulated inside the liposomal system in whose lipid bilayer is embedded Chla. Functioning as light-harvesting antennas, Lip NP integrates diagnosis, therapy, and the monitoring of therapeutic effects, for simultaneous imaging and therapy in situ. To treat chronic diseases such as osteoarthritis (OA), a system that can continuously provide a high therapeutic concentration of gaseous H2 in diseased tissues is needed. The delivery system proposed in the third study comprises poly(lactic-co-glycolic acid) microparticles that contain magnesium powder (Mg@PLGA MPs). Mg@PLGA MPs that are intra-muscularly injected close to the OA knee in a mouse model can act as an in situ depot that can evolve gaseous H2 continuously, mediated by the cycle of passivation/activation of Mg in body fluids. The proposed Mg@PLGA MPs can effectively mitigate tissue inflammation and prevent cartilage from destruction, arresting the progression of OA changes. These analytical results demonstrate the feasibility of using H2-generating systems to provide the multifunctional theranostic platform in the treatment of inflamed tissue.
[1] D. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discov. 2009, 8, 579.
[2] T. Finkel, J. Cell Biol. 2011, 194, 7.
[3] M. Nita, A.Grzybowski, Oxid. Med. Cell. Longev. 2016, 2016, 3164734.
[4] A. P. West, I. E. Brodsky, C. Rahner, D. K. Woo, H. Erdjument-Bromage, P. Tempst, M. C. Walsh, Y. Choi, G. S. Shadel, S. Ghosh, Nature 2011, 472, 476.
[5] B. Kalyanaraman, Redox Biol. 2013, 1, 244.
[6] P. D. Ray, B. W. Huang, Y. Tsuji, Cell. Signal. 2012, 24, 981.
[7] S. Di Meo, T. T. Reed, P. Venditti, V. M. Victor, Oxid. Med. Cell. Longev. 2016, 2016, 1245049.
[8] M. Hultqvist, L. M. Olsson, K. A. Gelderman, R. Holmdahl, Trends Immunol. 2009, 30, 201.
[9] Y. Yang, A. V. Bazhin, J. Werner, S. Karakhanova, Int. Rev. Immunol. 2013, 23, 249.
[10]H. Dumond, N. Presle, P. Pottie, S. Pacquelet, B. Terlain, P. Netter, A. Gepstein, E. Livne, J. Y. Jouzeau, Osteoarthritis Cartilage 2004, 12, 284.
[11]P. Lepetsos, A. G. Papavassiliou, Biochim. Biophys. Acta 2016, 1862, 576.
[12]J. Bondeson, A. B. Blom, S. Wainwright, C. Hughes, B. Caterson, W. B. van den Berg, Arthritis Rheum. 2010, 62, 647.
[13]A. Courties, O. Gualillo, F. Berenbaum, J. Sellam, Osteoarthritis Cartilage, 2015, 23, 1955.
[14]C. Liu, R. Kurokawa, M. Fujino, S. Hirano, B. Sato, X. K. Li, Sci. Rep. 2014, 4, 5485.
[15]I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K. Katsura, Y. Katayama, S. Asoh, S. Ohta, Nat. Med. 2007, 13, 688.
[16]M. Shen, H. Zhang, C. Yu, F. Wang, X. Sun, Med. Gas Res. 2014, 4, 17.
[17]M. Ichihara, S. Sobue, M. Ito, M. Ito, M. Hirayama, K. Ohno, Med. Gas Res. 2015, 5, 12.
[18]S. Zhao, Y. Yang, W. Liu, Z. Xuan, S. Wu, S. Yu, K. Mei, Y. Huang, P. Zhang, J. Cai, J. Ni, Y. Zhao, J. Cell. Mol. Med. 2014, 18, 938.
[19]S. Ohta, Pharmacol. Ther. 2014, 144, 1.
[20]Y. Wang, H. Suzuki, J. Xie, O. Tomita, D. J. Martin, M. Higashi, D. Kong, R. Abe, J. Tang, Chem. Rev. 2018, 118, 5201.
[21]B. Zheng, R. P. Sabatini, W. F. Fu, M. S. Eum, W. W. Brennessel, L. Wang, D. W. McCamant, R. Eisenberg, Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E3987.
[22]D. Eguchi, M. Sakamoto, T. Teranishi, Chem. Sci. 2017, 9, 261.
[23]L. Liang, Y. Lu, R. Zhang, A. Care, T. A. Ortega, S. M. Deyev, Y. Qian, A. V. Zvyagin, Acta Biomater. 2017, 51, 461.
[24]W. Stopyra, J. Kurzac, K. Gruber, T. Kurzynowski, E. Chlebus, Proc. SPIE Int. Soc. Opt. Eng. 2016, 10159, 101590R-1.
[25]Y. Zhang, X. Zhan, J. Xiong, S. Peng, W. Huang, R. Joshi, Y. Cai, Y. Liu, R. Li, K. Yuan, N. Zhou, W. Min, Sci. Rep. 2018, 8, 8720.
[26]J. Peng, W. Xu, C. L. Teoh, S. Han, B. Kim, A. Samanta, J. C. Er, L. Wang, L. Yuan, X. Liu, Y. T. Chang, J. Am. Chem. Soc. 2015, 137, 2336.
[27]M. Wu, X. Wang, K. Wang, Z. Guo, Chem. Commun. 2016, 52, 8377.
[28]L. Mao, L. Shen, J. Chen, X. Zhang, M. Kwak, Y. Wu, R. Fan, L. Zhang, J. Pei, G. Yuan, C. Song, J. Ge, W. Ding, Sci. Rep. 2017, 7, 46343.
[29]R. Ambat, N. N. Aung, W. Zhou, J. Appl. Electrochem. 2014, 44, 411.
[30]Y. K. Kim, K. B. Lee, S. Y. Kim, K. Bode, Y. S. Jang, T. Y. Kwon, M. H. Jeon, M. H. Lee, Sci. Technol. Adv. Mater. 2018, 19, 324.
[31]M. Sheikhpour, L. Barani, A. Kasaeian, J. Control. Release 2017, 253, 97.
[32]X. Li, X. Jiang, Adv. Drug Deliv. Rev. 2018, 128, 101.
[33]C. Chen, J. Geng, F. Pu, X. Yang, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2011, 50, 882.
[34]K. Liang, G. Such, A. Johnston, Z. Zhu, H. Ejima, J. Richardson, J. Cui, F. Caruso, Adv. Mater. 2014, 26, 1901.
[35]D. Schmaljohann, Adv. Drug Delivery Rev. 2006, 58, 1655.
[36]H. L. Pu, W. L. Chiang, B. Maiti, Z. X. Liao, Y. C. Ho, M. S. Shim, E. Y. Chuang, Y. Xia, H. W. Sung, ACS Nano 2014, 8, 1213.
[37]Y. S. Bae, J. H. Lee, S. H. Choi, S. Kim, F. Almazan, J. L. Witztum, Y. I. Miller, Circ. Res. 2009, 104, 210.
[38]T. Kurioka, T. Matsunobu, Y. Satoh, K. Niwa, A. Shiotani, Neurosci. Res. 2014, 89, 69.
[39]S. X. Guo, Q. Fang, C. G. You, Y. Y. Jin, X. G. Wang, X. L. Hu, C. M. Han, J. Transl. Med. 2015, 13, 183.
[40]A. Shimouchi, K. Nose, T. Mizukami, D. C. Che, M. Shirai, Adv. Exp. Med. Biol. 2013, 789, 315.
[41]S. Berardi, S. Drouet, L. Francàs, C. Gimbert-Suriñach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501.
[42]S. T. Jones, Z. Walsh-Korb, S. J. Barrow, S. L. Henderson, J. del Barrio, O. A. Scherman, ACS Nano 2016, 10, 3158.
[43]P. Y. Bolinger, D. Stamou, H. Vogel, J. Am. Chem. Soc. 2004, 126, 8594.
[44]L. Nováková, P. Solich, D. Solichová, Trends Analyt. Chem. 2008, 10, 942.
[45]Q. Zhang, K. Zhao, Q. Shen, Y. Han, Y. Gu, X. Li, D. Zhao, Y. Liu, C. Wang, X. Zhang, X. Su, J. Liu, W. Ge, R. L. Levine, N. Li, X. Cao, Nature 2015, 525, 389.
[46]Y. Takemura, M. Satoh, K. Satoh, H. Hamada, Y. Sekido, S. Kubota, Biochem. Biophys. Res. Commun. 2010, 394, 249.
[47]E. Wang, M. Wink, PeerJ 2016, 4, e1879.
[48]P. Wang, X. Wang, L. Wang, X. Hou, W. Liu, C. Chen, Sci. Technol. Adv. Mater. 2015, 16, 034610.
[49]H. Y. Ahn, K. E. Fairfull-Smith, B. J. Morrow, V. Lussini, B. Kim, M. V. Bondar, S. E. Bottle, K. D. Belfield, J. Am. Chem. Soc. 2012, 134, 4721.
[50]C. J. Su, S. S. Wu, U. Jeng, M. T. Lee, A. C. Su, K. F. Liao, W. Y. Lin, Y. S. Huang, C. Y. Chen, Biochim. Biophys. Acta. 2013, 1828, 528.
[51]A. W. Gardner, P. S. Montgomery, Y. D. Zhao, F. Silva-Palacios, Z. Ungvari, A. Csiszar, W. E. Sonntag, J. Vasc. Surg. 2017, 65, 1762.
[52]C. Tapeinos, A. Pandit, Adv. Mater. 2016, 28, 5553.
[53]G. Saravanakumar, J. Kim, W. J. Kim, Adv. Sci. 2017, 4, 1600124.
[54]E. Albers, V. S. Okreglak, C. J. Chang, J. Am. Chem. Soc. 2006, 128, 9640.
[55]K. M. Kang, Y. N. Kang, I. B. Choi, Y. Gu, T. Kawamura, Y. Toyoda, A. Nakao, Med. Gas Res. 2011, 1, 11.
[56]Y. He, B. Zhang, Y. Chen, Q. Jin, J. Wu, F. Yan, H. Zheng, ACS Appl. Mater. Interfaces 2017, 9, 21190.
[57]L. Huang, Med. Gas Res. 2016, 6, 219.
[58]W. L. Wan, Y. J. Lin, H. L. Chen, C. C. Huang, P. C. Shih, Y. R. Bow, W. T. Chia, H. W. Sung, J. Am. Chem. Soc. 2017, 139, 12923.
[59]T. Yang, Z. Jin, Z. Wang, P. Zhao, B. Zhao, M. Fan, L. Chen, T. Wang, B. L. Sub, Q. Hea, Applied Materials Today 2018, 11, 136.
[60]S. Han, B. W. Hwang, E. Y. Jeon, D. Jung, G. H. Lee, D. H. Keum, K. S. Kim, S. H. Yun, H. J. Cha, S. K. Hahn, ACS Nano 2017, 11, 9979.
[61]Z. Li, T. Liang, S. Lv, Q. Zhuang, Z. Liu, J. Am. Chem. Soc. 2015, 137, 11179.
[62]S. Wu, N. Duan, Z. Shi, C. Fang, Z. Wang, Talanta 2014, 128, 327.
[63]J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, G. Zheng, Adv. Mater. 2013, 25, 6569.
[64]A. M. Speers, G. Reguera, Appl. Environ. Microbiol. 2012, 78, 437.
[65]Q. Zou, K. Liu, M. Abbas, X. Yan, Adv. Mater. 2016, 28, 1031.
[66]H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, C. H. Yan, J. Am. Chem. Soc. 2006, 128, 6426.
[67]A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, C. B. Murray, J. Am. Chem. Soc. 2011, 133, 998.
[68]M. S. Shim, Y. Xia, Angew. Chem. Int. Ed. 2013, 52, 6926.
[69]B. Dong, X. Song, X. Kong, C. Wang, Y. Tang, Y. Liu, W. Lin, Adv. Mater. 2016, 28, 8755.
[70]R. Weinstain, E. N. Savariar, C. N. Felsen, R. Y. Tsien, J. Am. Chem. Soc. 2014, 136, 874.
[71]S. Lee, A. Stubelius, N. Hamelmann, V. Tran, A. Almutairi, ACS Appl. Mater. Interfaces., DOI: 10.1021/acsami.8b08254.
[72]N. Su, Q. Wu, Y. Liu, J. Cai, W. Shen, K. Xia, J. Cui, J. Agric. Food Chem. 2014, 62, 6454.
[73]Q. Li, Y. Wen, X. You, F. Zhang, V. Shah, X. Chen, D. Tong, X. Wei, L. Yin, J. Wu, X. Xu, J. Mater. Chem. B 2016, 4, 4675.
[74]J. Li, C. Guo, F. Feng, A. Fan, Y. Dai, N. Li, D. Zhao, X. Chen, Y. Lu, Sci. Rep. 2016, 6, 38787.
[75]N. Davidovich, B. C. DiPaolo, G. G. Lawrence, P. Chhour, N. Yehya, S. S. Margulies, Am. J. Respir. Cell Mol. Biol. 2013, 49, 156.
[76]F. Berenbaum, Osteoarthritis Cartilage 2013, 21, 16.
[77]F. J. Blanco, A. M. Valdes, I. Rego-Pérez, Nat. Rev. Rheumatol. 2018, 14, 327.
[78]P. G. Mitchell, H. A. Magna, L. M. Reeves, L. L. Lopresti-Morrow, S. A. Yocum, P. J. Rosner, K. F. Geoghegan, J. E. Hambor, J. Clin. Invest. 1996, 97, 761.
[79]N. Gerwin, C. Hops, A. Lucke, Adv. Drug Deliv. Rev. 2006, 58, 226–242.
[80]T. Hanaoka, N. Kamimura, T. Yokota, S. Takai, S. Ohta, Med. Gas Res. 2011, 1, 18.
[81]Y. Xin, T. Hu, P. Chu, Acta Biomater. 2011, 7, 1452.
[82]C. Chen, E. Karshalev, J. Guan, J. Wang, Small 2018, 14, e1704252.
[83]F. Mou, C. Chen, H. Ma, Y. Yin, Q. Wu, J. Guan, Angew. Chem. Int. Ed. 2013, 52, 7208.
[84]F. Witte, H. Ulrich, M. Rudert, E. Willbold, J. Biomed. Mater. Res. A 2007, 81, 748.
[85]Z. Zhen, X. Liu, T. Huang, T. Xi, Y. Zheng, Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 46, 202.
[86]D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Biomaterials 2017, 112, 287.
[87]S. C. Cifuentes, R. Gavilán, M. Lieblich, R. Benavente, J. L. González-Carrasco, Acta Biomater. 2016, 32, 348.
[88]M. M. Pakulska, I. Elliott Donaghue, J. M. Obermeyer, A. Tuladhar, C. K. McLaughlin, T. N. Shendruk, M. S. Shoichet, Sci. Adv. 2016, 2, e1600519.
[89]L. Jin, J. Wu, G. Yuan, T. Chen, PLoS One 2018, 13, e0193276.
[90]J. Li, P. Angsantikul, W. Liu, B. E.-F. de Ávila, S. Thamphiwatana, M. Xu, E. Sandraz, X. Wang, J. Delezuk, W. Gao, L. F. Zhang, J. Wang, Angew. Chem. Int. Ed. 2017, 56, 2156.
[91]L. Yu, P. Hu, Y. Chen, Adv. Mater., DOI: 10.1002/adma.201801964.
[92]R. X. Zhang, K. Ren, R. Dubner, Osteoarthritis Cartilage 2013, 21, 1308.
[93]A. Sarmanova, M. Hall, J. Moses, M. Doherty, W. Zhang, Osteoarthritis Cartilage 2016, 24, 1376.
[94]P. Maudens, C. A. Seemayer, C. Thauvin, C. Gabay, O. Jordan, E. Allémann, Small 2018, 14, 1703108.
[95]S. E. Bove, S. L. Calcaterra, R. M. Brooker, C. M. Huber, R. E. Guzman, P. L. Juneau, D. J. Schrier, K. S. Kilgore, Osteoarthritis Cartilage 2003, 11, 821.
[96]M. F. Chung, W. T. Chia, W. L. Y. J. Wan, Lin, H. W. Sung, J. Am. Chem. Soc. 2015, 137, 12462.
[97]G. X. Ni, Z. Li, Y. Z. Zhou, Osteoarthritis Cartilage 2014, 22, 896.
[98]A. M. Valdes, I. Meulenbelt, E. Chassaing, N. K. Arden, S. Bierma-Zeinstra, D. Hart, A. Hofman, M. Karsdal, M. Kloppenburg, H. M. Kroon, E. P. Slagboom, T. D. Spector, A. G. Uitterlinden, J. B. van Meurs, A. C. Bay-Jensen, Osteoarthritis Cartilage 2014, 22, 683.