簡易檢索 / 詳目顯示

研究生: 林育彥
Lin, Yu-Yan
論文名稱: 適用含有機/無機微奈米粒子懸浮塗液系統於濕式塗佈製程之精密模具設計
Precision Coating Die Design for Suspensions: Organic/Inorganic Particles in Micro/Nano Scale
指導教授: 劉大佼
Liu, Ta-Jo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 152
中文關鍵詞: 衣架型模具Bingham流體懸浮液模具設計濕式製程
外文關鍵詞: coat-hanger die, Bingham model, suspensions, wet coating process
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塗佈產品如燈箱片、LCD擴散膜、CIGS薄膜太陽能電池、TCO透明導電膜等,其濕式製程所用之塗液皆為含有微奈米固體粒子之多相系統,以此類系統進行濕式塗佈工程時常面臨兩個問題:一是懸浮液系統可能含有屈伏應力,可能造成塗液於模具內流動緩慢或滯留,二是塗液中所含的固體粒子在塗佈模具內發生沉澱的現象。實驗結果顯示模具之分流管越大,粒子在分流管內的沉澱就越嚴重;反之若模具分流管內之流場具有較大之切變率則可改善此問題。本研究之目的為設計一衣架型模具,其分流管為一極淺的矩形,如此可維持模具內之流動維持高切變率。為了改善衣架型模具製作費用昂貴的缺點,本研究提出了組合式模具之設計概念。
    本研究內容分為理論模擬與實驗驗證兩部分:理論部分先以巨觀一維之滑潤理論設計模具形狀,再配合有限元素法來模擬模具內二維(2-D Hele-Shaw flow)和三維之流動情況,出口流量分佈及所產生之滯留區,塗液之流變行為假設遵守Bingham 模型。理論模擬之結果顯示以滑潤理論設計之衣架型模具能夠傳遞均勻的液膜且模具內亦無明顯之滯留區存在,模具之幾何形狀具有彈性,可隨著不同之操作流體而做調整,T型模具由於分流管較大故在末端有滯留區的產生,此區域容易發生粒子沉澱之現象。實驗部分以常用之T型模具和魚尾型模具作為對照組,探討流量均勻度和粒子沉澱兩個議題,結果證實本研究所設計之模具能成功解決粒子沉澱之問題且塗膜之均勻度亦非常優越,相對而言T型模具和魚尾型模具則分別具有粒子沉澱和模具尺寸受限制等問題。本研究結果可作為銅銦鎵硒(copper indium gallium selenide, CIGS)太陽能電池與透明導電膜(transparent conductive oxide, TCO)等產品於濕式製程之模具設計參考。


    Coating solutions with a significant amount of solid particles added are not unusual for many industrial applications. Products such as backlit films, diffusers for LCD panels, CIGS solar cells are just a few examples. Two issues arise for delivering such solutions, i.e. the solutions may have yield stress and particle sedimentations may appear in the manifolds for conventional coat-hanger or T-dies. There are experimental evidences that clearly indicate that particle sedimentation can be serious in the manifold on the die. A die that can maintain relatively high shear ratse in the manifold can improve this precipitation problem. The purpose of this research is to design a coat-hanger die which has a shallow manifold with rectangular cross-sectional area. Therefore, flow field with high shear rate can be achieved. Due to the high cost of traditional coat-hanger die, this research also propsed a new idea-using two easily-replaced shims to make a die, this design can effectively reduce the cost of manufacture.
    Both the theoretical modeling and the experimental verifications were carried out for die design. The coating solutions were assumed to obey the Bingham viscoplastic model. A mathematical model based on the 1D lubrication approximation, 2D Hele-Shaw flow and 3D flow simulations were developed to predict the performance of the new design, the computer-aided solutions by the finite difference (FDM) and the finite element method (FEM) could be obtain. The performance of the design based on the lubrication approach is in agreement with the 3D simulation and experimental results, therefore the new die can develop uniform flow and no stagnent zone can exist in the end of the manifold, so that the sedimentation can be avoided. We also compared the sedimentation and uniformity of our design to a commercial T-die and fishtail die experimentally, the results indicated the performance of our design is excellent, sedimentation and uniformity problem appeared in both the T die and fishtail die. The design of our research can be applied to the wet coating process of CIGS solar cell & TCO films.

    目錄 摘要 I Abstract II 謝誌 IV 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1-1 CIGS太陽能電池簡介 2 1-2 精密塗佈技術介紹 4 1-3 塗佈視窗與缺陷定義 8 1-4 良好模具設計之要求 11 1-5 研究動機與方向 14 第二章 文獻回顧 17 2-1 懸浮液系統及其工業應用 17 2-1.1 懸浮液系統 17 2-1.2 CIGS薄膜太陽能電池相關製程 21 2-2 狹縫式塗佈工程 26 2-3 塗佈模具之設計 29 2-3.1 巨觀理論 29 2-3.2 微觀理論 31 2-3.3 特殊模具之設計 32 第三章 巨觀理論 35 3-1 Bingham流體之流變模型 37 3-2 流動系統之尺度分析 39 3-2.1 分流管內一維流動之尺度分析 39 3-2.2 粒子在模具厚度方向受力之尺度分析 45 3-3 Bingham流體於矩形流道內流量壓降方程式之建立 48 3-4 一維流動之統御方程式 60 3-5 以巨觀理論設計具矩形分流管之衣架型模具 63 第四章 微觀理論 68 4-1 二維 Hele-Shaw Flow流場模擬 68 4-2 三維流場模擬 71 4-3 數值方法 73 第五章 實驗方法 75 5-1 實驗藥品 75 5-2 實驗儀器 76 5-3 實驗流體配置 80 5-4 實驗步驟 81 5-4.1 沉澱實驗 81 5-4.2 均勻度實驗 82 第六章 結果討論 85 6-1 1-D、2-D與3-D理論分析工具之比較 85 6-1.1 具矩形分流管之T型模具 85 6-1.2 具有矩形分流管之線性衣架型模具 86 6-1.3 設計不適合2D Hele-Shaw Flow 之模具 87 6-1.4 三種理論工具比較之整理 88 6-2 以巨觀理論設計最適化模具 95 6-2.1 無因次群Bi與Re範圍之估計 95 6-2.2 模具設計參數 96 6-2.3 粒子沉澱距離預測 97 6-2.4 流體物性與操作參數對均勻度之影響 98 6-2.5 小結 100 6-3 塗佈模具之微觀分析 108 6-3.1 巨觀理論設計模具之微觀檢驗 108 6-3.2 以微觀理論工具對模具幾何形狀進行修正 108 6-3.3 慣性力對於最適化模具之影響 109 6-3.4 流體物性對於最佳化模具之影響 110 6-3.5 模具末端之滯留區分析 111 6-3.6 小結 111 6-4 流量均勻度之實驗分析 119 6-5 粒子沉澱之實驗分析 124 第七章 結論與未來展望 129 附錄 A 相關計算 131 A1 以有限差分法解Poisson’s Equation 131 A2 Bingham流體一維流動之流量壓降方程式之驗證 134 A3 2-D Hele-Shaw Flow程式檢驗 137 A4 三維流場模擬程式檢驗 138 附錄 B 符號說明 140 附錄 C 參考文獻 143

    1 Muller, H. J., Semiconductors for Solar Cells. Artech House, Bontons, (1993).
    2 Russel, W. B., Review of the role of colloidal forces in the rheology of suspensions Journal of Rheology 24 (3), 287 (1980).
    3 Macosko, C. W. and Larson, R. G., Rheology: principles, measurements, and applications. Wiley, New York, (1994).
    4 Einstein, A., A new determination of molecular dimensions. Annalen der Physik 19 (4), 289 (1906).
    5 Mooney, M., The viscosity of a concentrated suspension of spherical particles* 1. Journal of Colloid Science 6 (2), 162 (1951).
    6 Jones, D. A. R., Leary, B., and Boger, D. V., The rheology of a concentrated colloidal suspension of hard spheres. Journal of Colloid and Interface Science 147 (2), 479 (1991).
    7 Mills, P., Non-Newtonian behaviour of flocculated suspensions. Journal de Physique Lettres 46 (7), 301 (1985).
    8 Leighton, D. and Acrivos, A., The shear-induced migration of particles in concentrated suspensions. Journal of Fluid Mechanics 181, 415 (1987).
    9 Abbott, J. R., Tetlow, N., Graham, A. L., Altobelli, S. A., Fukushima, E., Mondy, L. A., and Stephens, T. S., Experimental observations of particle migration in concentrated suspensions: Couette flow. Journal of Rheology 35, 773 (1991).
    10 Altobelli, S. A., Givler, R. C., and Fukushima, E., Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging. Journal of Rheology 35, 721 (1991).
    11 Lyon, M. K. and Leal, L. G., An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. Journal of Fluid Mechanics 363, 25 (1998).
    12 Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A. L., and Abbott, J. R., A constitutive equation for concentrated suspensions that accounts for shear induced particle migration. Physics of Fluids A: Fluid Dynamics 4, 30 (1992).
    13 Mills, P. and Snabre, P., Rheology and structure of concentrated suspensions of hard spheres. Shear induced particle migration. Journal de Physique. II 5, 1597 (1995).
    14 Nott, P. R. and Brady, J. F., Pressure-driven flow of suspensions: simulation and theory. Journal of Fluid Mechanics 275, 157 (1994).
    15 Barnes, H. A., A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. Journal of Non-Newtonian Fluid Mechanics 56 (3), 221 (1995).
    16 Wang, Z. Y., Lam, Y. C., Chen, X., and Joshi, S. C., Viscosity corrections for concentrated suspension in capillary flow with wall slip. AIChE Journal 56 (6) (2010).
    17 Kapur, V. K., Bansal, A., Le, P., and Asensio, O. I., Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films 431, 53 (2003).
    18 Yamamura, M., Miura, H., and Kage, H., Postponed air entrainment in dilute suspension coatings. AIChE Journal 51 (8), 2171 (2005).
    19 Yamamura, M., Matsunaga, A., Mawatari, Y., Adachi, K., and Kage, H., Particle-assisted dynamic wetting in a suspension liquid jet impinged onto a moving solid at different flow rates. Chemical Engineering Science 61 (16), 5421 (2006).
    20 Chu, W. B., Yang, J. W., Wang, Y. C., Liu, T. J., Tiu, C., and Guo, J., The effect of inorganic particles on slot die coating of poly (vinyl alcohol) solutions. Journal of Colloid and Interface Science 297 (1), 215 (2006).
    21 Bertrand, G., Filiatre, C., Mahdjoub, H., Foissy, A., and Coddet, C., Influence of slurry characteristics on the morphology of spray-dried alumina powders. Journal of the European Ceramic Society 23 (2), 263 (2003).
    22 Studart, A. R., Amstad, E., and Gauckler, L. J., Colloidal stabilization of nanoparticles in concentrated suspensions. Langmuir 23 (3), 1081 (2007).
    23 Tseng, W. J. and Lin, K. C., Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Materials Science and Engineering A 355 (1-2), 186 (2003).
    24 Tiwari, M. K., Bazilevsky, A. V., Yarin, A. L., and Megaridis, C. M., Elongational and shear rheology of carbon nanotube suspensions. Rheologica Acta 48 (6), 597 (2009).
    25 Zhang, M. H., Ferraris, C. F., Huaning, Z. H. U., Picandet, V., Peltz, M. A., Stutzman, P., and De Kee, D., Measurement of yield stress for concentrated suspensions using a plate device. Materials and Structures 43 (1-2), 47 (2010).
    26 Tamjid, E. and Guenther, B. H., Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol. Powder Technology 197 (1-2), 49 (2009).
    27 Kaelin, M., Rudmann, D., and Tiwari, A. N., Low cost processing of CIGS thin film solar cells. Solar Energy 77 (6), 749 (2004).
    28 Powalla, M. and Dimmler, B., Process development of high performance CIGS modules for mass production. Thin Solid Films 387 (1-2), 251 (2001).
    29 Ramanathan, K., Contreras, M. A., Perkins, C. L., Asher, S., Hasoon, F. S., Keane, J., Young, D., Romero, M., Metzger, W., and Noufi, R., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells Progress in Photovoltaics: Research and Applications 11 (4) (2003).
    30 Ingrid, R., Miguel, A. C., and Brian, E., 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Progress in Photovoltaies: Research and Applications 16, 235 (2008).
    31 Palm, J., Probst, V., Brummer, A., Stetter, W., Tolle, R., Niesen, T. P., Visbeck, S., Hernandez, O., Wendl, M., and Vogt, H., CIS module pilot processing applying concurrent rapid selenization and sulfurization of large area thin film precursors. Thin Solid Films 431, 514 (2003).
    32 Krunks, M., Kijatkina, O., Rebane, H., Oja, I., Mikli, V., and Mere, A., Composition of CuInS2 thin films prepared by spray pyrolysis. Thin Solid Films 403, 71 (2002).
    33 Lincot, D., Guillemoles, J. F., Taunier, S., Guimard, D., Sicx-Kurdi, J., Chaumont, A., Roussel, O., Ramdani, O., Hubert, C., Fauvarque, J. P., Bodereau, N., Parissi, L., Panheleux, P., Fanouillere, P., Naghavi, N., Grand, P. P., Benfarah, M., Mogensen, P., and Kerrec, O., Chalcopyrite thin film solar cells by electrodeposition. Solar Energy 77 (6), 725 (2004).
    34 Basol, B. M., Low cost techniques for the preparation of Cu (In, Ga)(Se, S)2 absorber layers. Thin Solid Films 361, 514 (2000).
    35 Hirpo, W., Dhingra, S., Sutorik, A. C., and Kanatzidis, M. G., Synthesis of mixed copper-indium chalcogenolates. Single-source precursors for the photovoltaic materials CuInQ2 (Q= S, Se). Journal of the American Chemical Society 115 (4), 1597 (1993).
    36 Bhattacharya, R. N., Hiltner, J. F., Batchelor, W., Contreras, M. A., Noufi, R. N., and Sites, J. R., 15.4% CuIn1-xGaxSe2-based photovoltaic cells from solution-based precursor films. Thin Solid Films 361, 396 (2000).
    37 Eberspacher, C., Fredric, C., Pauls, and Jack Serra, K., Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques. Thin Solid Films 387 (1-2), 18 (2001).
    38 Kapur, V. K., Basol, B. M., Leidholm, C. R., Roe, R. A., Kapur, V. K. I. S., Basol, B. M. I. S., Leidholm, C. R. I. S., and Roe, R. A. I. S., Oxide-based process for making compound semiconductor films used in manufacture of solar cells and other electronic devices. United States Patent 6,127,202 (2000).
    39 Chiu, C. Y., Liao, Y. C., and Guo, F. G., Low cost processing for CIGS solar cell. Industrial Materials 276, 58 (2009).
    40 Beguin, A. E., Method of coating strip material. United States Patent 2,681,294 (1954).
    41 Landau, L. D. and Levich, V. G., Dragging of a liquid by a moving plate. Acta Phys. Chim. USSR 17, 42 (1942).
    42 Ruschak, K. J., Limiting flow in a pre-metered coating device Chemical Engineering Science 31 (11), 1057 (1976).
    43 Higgins, B. G. and Scriven, L. E., Capillary-pressure and viscous-pressure-drop set bounds on coating bead operability Chemical Engineering Science 35 (3), 673 (1980).
    44 Hens, J. and Boiy, L., Operation of the bead of a pre-metered coating device. Chemical Engineering Science 41 (7), 1827 (1986).
    45 Taylor, S. D. and Hrymak, A. N., Visualization and flow simulation of a two-layer slot coater. Chemical Engineering Science 54 (7), 909 (1999).
    46 Chang, Y. R., Chang, H. M., Lin, C. F., Liu, T. J., and Wu, P. Y., Three minimum wet thickness regions of slot die coating. Journal of Colloid and Interface Science 308 (1), 222 (2007).
    47 Chang, Y. R., Lin, C. F., and Liu, T. J., Start-up of slot die coating. Polymer Engineering and Science 49 (6), 1158 (2009).
    48 Carley, J. F., Flow of melts in"crosshead''-slit dies; criteria for die design. Journal of Applied Physics 25, 1118 (1954).
    49 McKelvey, J. M. and Ito, K., Uniformity of flow from sheeting dies. Polymer Engineering and Science 11 (3), 258 (1971).
    50 Tanaka, Y., Noda, S., and Chikamasa, H., Coating method. United States Patent 4,465,707 (1982).
    51 Liu, L. D., Wen, S. H., and Liu, T. J., Extrusion die design for viscoplastic fluids. Advances in Polymer Technology 13 (4), 283 (1994).
    52 Leonard, W. K., Inertia and gravitational effects in extrusion dies for non-Newtonian fluids. Polymer Engineering and Science 25 (9), 570 (1985).
    53 Nagashima, M., Hasegawa, T., and Narumi, T., Flow behavior of Herschel-Bulkley fluid in a slot die. Journal of the Society of Rheology, Japan 34 (4), 213 (2006).
    54 Matsubara, Y., Geometry design of a coat-hanger die with uniform flow rate and residence time across the die width. Polymer Engineering and Science 19 (3) (1979).
    55 Matsubara, Y., Design of coat-hanger sheeting dies based on ratio of residence times in manifold and slot. Polymer Engineering and Science 20 (11) (1980).
    56 Liu, T. J., Fully developed flow of power-law fluids in ducts. Industrial and Engineering Chemistry Fundamentals 22 (2), 183 (1983).
    57 Liu, T. J. and Hong, C. N., The pressure drop/flow rate equation for non-Newtonian flow in channels of irregular cross-section. Polymer Engineering and Science 28 (23) (1988).
    58 Liu, T. J., Liu, L. D., and Tsou, J. D., A unified lubrication approach for the design of a coat-hanger die. Polymer Engineering and Science 34 (7) (1994).
    59 Charbonneaux, T. G., Design of sheet dies for minimum residence time distribution - a review. Polymer-Plastics Technology and Engineering 30 (7), 665 (1991).
    60 Weinstein, S. J. and Ruschak, K. J., One-dimensional equations governing single-cavity die design. AIChE Journal 42 (9), 2401 (1996).
    61 Wang, Y., The flow distribution of molten polymers in slit dies and coat-hanger dies through three-dimensional finite element analysis. Polymer Engineering and Science 31 (3), 204 (1991).
    62 Wen, S. H. and Liu, T. J., Three-dimensional finite element analysis of polymeric fluid flow in an extrusion die. Part I: Entrance effect. Polymer Engineering and Science 34 (10), 827 (1994).
    63 Vergnes, B., Saillard, P., and Agassant, J. F., Non-isothermal flow of a molten polymer in a coat-hanger die. Polymer Engineering and Science 24 (12), 980 (1984).
    64 Wu, P. Y., Huang, L. M., and Liu, T. J., A simple-model for heat-transfer inside an extrusion die Polymer Engineering and Science 35 (21), 1713 (1995).
    65 Yu, Y. W., Analysis on complex flows inside an extrusion die, Ph.D. Dissertation, National Tsing Hua University, Hsinchu, Taiwan, 1998.
    66 Huang, Y. H., Gentle, C. R., and Hull, J. B., A comprehensive 3-D analysis of polymer melt flow in slit extrusion dies. Advances in Polymer Technology 23 (2), 111 (2004).
    67 Wang, X. H., Chen, T., and Huang, X. B., Simulation of the polymeric fluid flow in the feed distributor of melt blowing process. Journal of Applied Polymer Science 101 (3), 1570 (2006).
    68 Meng, K., Wang, X. H., and Huang, X. B., Numerical analysis of the stagnation phenomenon in the coat-hanger die of melt blowing process. Journal of Applied Polymer Science 108 (4), 2523 (2008).
    69 Lebaal, N., Schmidt, F., and Puissant, S., Design and optimization of three-dimensional extrusion dies, using constraint optimization algorithm. Finite Elements in Analysis and Design 45 (5), 333 (2009).
    70 Ito, K., Designing fish-tail die. Japan Plast 4, 27 (1970).
    71 Rothemeyer, F., Sheet extruding head for extruding thermoplastic resins. United States Patent 3,384,925 (1968).
    72 Huang, C. C., Tsay, S. Y., and Wang, Y., 3-Dimensional path line tracking and residence time distribution in fishtail fies. Polymer Engineering and Science 33 (11), 709 (1993).
    73 Charbonneaux, T. G., Design of sheet dies for minimum residence time distribution: A review. Polymer-Plastics Technology and Engineering 30 (7), 665 (1991).
    74 Winter, H. H. and Fritz, H. G., Design of dies for the extrusion of sheets and annular parisons: The distribution problem. Polymer Engineering and Science 26 (8) (1986).
    75 Lee, K. Y. and Liu, T. J., Design and analysis of a dual-cavity coat-hanger die. Polymer Engineering and Science 29 (15), 1066 (1989).
    76 Wu, P. Y., Liu, T. J., and Chang, H. M., Design of an extrusion die with a variable choker bar Journal of Applied Polymer Science 51 (6), 1005 (1994).
    77 Smith, D. E. and Wang, Q., Incorporating Adjustable Features in the Optimal Design of Polymer Sheet Extrusion Dies. Journal of Manufacturing Science and Engineering 128, 11 (2006).
    78 Chiou, J. Y., Wu, P. Y., Tsai, C. C., and Liu, T. J., An integrated analysis for a coextrusion process. Polymer Engineering and Science 38 (1), 49 (1998).
    79 Gifford, W. A., A three-dimensional analysis of coextrusion in a single manifold flat die. Polymer Engineering and Science 40 (9) (2000).
    80 Wen, S. H. and Liu, T. J., Extrusion die design for multiple stripes. Polymer Engineering and Science 35 (9) (1995).
    81 Liu, T. J. and Yu, Y. W., Die set for preparing ABCABC multiple-stripe coating. United States Patent 6,423,140 (2002).
    82 Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena. Wiley, New York, (1960).
    83 Skelland, A. H. P., Non-Newtonian flow and heat transfer. Wiley, New York, (1967).
    84 Lipscomb, G. G. and Denn, M. M., Flow of Bingham fluids in complex geometries. Journal of Non-Newtonian Fluid Mechanics 14, 337 (1984).
    85 Papanastasiou, T. C., Flow of materials with yield. Journal of Rheology 31 (5), 385 (1987).
    86 Leal, L. G., Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge Univ Press, New York, (2007).
    87 Batchelor, G. K., Sedimentation in a dilute dispersion of spheres. Journal of Fluid Mechanics 52 (02), 245 (2006).
    88 Taylor, A. J. and Wilson, S. D. R., Conduit flow of an incompressible, yield-stress fluid. Journal of Rheology 41 (1), 93 (1997).
    89 Lee, S. L. and Tzong, R. Y., Artificial pressure for pressure-linked equation. International Journal of Heat and Mass Transfer 35 (10), 2705 (1992).
    90 Hieber, C. A. and Shen, S. F., A finite-element/finite-difference simulation of the injection-molding filling process. Journal of Non-Newtonian Fluid Mechanics 7 (1), 1 (1980).
    91 Chiang, H. H., Hieber, C. A., and Wang, K. K., A unified simulation of the filling and postfilling stages in injection molding. Part I: Formulation. Polymer Engineering and Science 31 (2), 116 (2004).
    92 Dhatt, G., Touzot, G., and Cantin, G., The finite element method displayed. Engineering Analysis 1 (2), 119 (1984).
    93 Taylor, C. and Hughes, T. G., Finite element programming of the Navier-Stokes equations. Pineridge Press, Swansea, (1981).
    94 Perry, R. H., Green, D. W., and Maloney, J. O., Perry’s chemical engineering handbook. McGraw-Hill, New York, (1984).
    95 Brian, Mgpva, Dunn, Gjpsl, Brian, Adpfb, and Korgel, A., Synthesis of CuInS2, CuInSe2, and Cu (InxGa1-x) Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics. Journal of the American Chemical Society 130, 49 (2008).
    96 Kozicki, W., Chou, C. H., and Tiu, C., Non-Newtonian flow in ducts of arbitrary cross-sectional shape. Chemical Engineering Science 21 (8), 665 (1966).
    97 Vola, D., Boscardin, L., and Latche, J. C., Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results. Journal of Computational Physics 187 (2), 441 (2003).
    98 Huilgol, R. R. and You, Z., Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids. Journal of Non-Newtonian Fluid Mechanics 128 (2-3), 126 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE