研究生: |
朱菀婷 Wan-Ting Chu |
---|---|
論文名稱: |
共平面式電極介電濕潤法之微液滴流場探討 The fluidic phenomena on coplanar type electrodes based of electrowetting-on-dielectric device |
指導教授: |
饒達仁
Da-Jeng Yao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 電濕潤 、共平面電極 、外加結構 、微液滴 |
外文關鍵詞: | electrowetting, (EWOD), coplanar electrode, additional structures, microdroplet. |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是以介電濕潤(Electrowetting-on-dielectric, EWOD)為基礎,設計介電濕潤共平面式晶片,藉由在微液滴裡加入適量的微粒,探討當微液滴在不同情況下移動時,微液滴裡的流場情況。
實驗中主要是將電極設計在同一平面上,在上方加入疏水上蓋且無電極的平板,進而操控微液滴的產生、移動、混合與分離等動作,如此ㄧ來,此類介電濕潤共平面式晶片,將更有靈活的設計空間,以整合其他檢測系統,達到實驗室晶片(Lab on a Chip)的總目標。
當微液滴移動時,微液滴裡流場的變化情形,並且藉由移動到不同方向的電極,觀察此差異。此外在疏水上蓋設計且製作柱狀結構來干擾微液滴移動,並觀察流場變化。在微液滴裡面加入適量的微粒,觀察並探討當定量的微液滴在通過不同間距下的外加結構時,利用微粒的移動情形來探討微液滴內的流場情形,並對其造成的影響。
由於在生醫檢測上要使流體混合均勻且快速的方法,通常是設計十字型的電極,使微液滴來回的移動,達到微液滴混合均勻的效果。但是本研究希望以此數位微流體技術結合外加結構來操控微液滴,使微液滴的混合更快速,需要的電極數目也較少,使得整套系統可應用於生醫方面的檢測與應用。
1. Feynman, R., There's plenty of room at the bottom. Journal of Microelectromechanical Systems, 1992. 1(1): p. 60-66.
2. Feynman, R., Infinitesimal machinery. Journal of Micro Electro Mechanical Systems, 1993. 2(1): p. 4-14.
3. Washizu, M., Electrostatic actuation of liquid droplets for microreactor applications IEEE Transactions on Industry Applications, 1998. 34(4): p. 732-737.
4. Jones, T.B., et al., Dielectrophoretic liquid actuation and nanodroplet formation. Journal of Applied Physics, 2001. 89(2): p. 1441-1448.
5. Sung Kwon Cho, et al., Spillting a liquid droplet for electrowetting-based microfluidics, in Mechanical Engineering Congress and Exposition. 2001. p. IMECE2001/MEMS-23830.
6. M. G. Pollack, A.D. Shenderov, and R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. The Royal Society of Chemistry 2002, 2002. 2: p. 96-101.
7. Cho, S.K., H. Moon, and C.-J. Kim, Creating, transporting, cutting and merging liquid droplets by Electrowetting-Based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003. 12: p. 70-80.
8. Lee, J. and C.-J. Kim, Surface Tension Driven Microactuation Based on Continuous Electrowetting (CEW). Journal of Microelectromechanical Systems, 2000. 9(2): p. 171-180.
9. Lee, J., et al., Electrowetting and Electrowetting-on-Dielectric for microscale liquid handling. Sensors and Actuators A: Physical, 2002. 95(2): p. 259-268.
10. A. G. Papathanasiou, A. T. Papaioannou, and A.G. Boudouvis, Illuminating the connection between contact angle saturation and dielectric breakdown in electrowetting through leakage current measurements. JOURNAL OF APPLIED PHYSICS, 2008. 103: p. 34901-1-4.
11. Chuang, K.C. and S.K. Fan, Direct handwriting manipulation of droplets by Self-Aligned Mirror-EWOD across a dielectric sheet, in MEMS 2006. 2006. p. 538-541.
12. Cheng-Pu Chiu, Shang-Chih Lin, and S.-K. Fan. Droplet manipulation by electrowetting on polymer dispersed liquid crystal. in Transducer & Eurosensors'07. 2007. France.
13. J. Berthier , et al., Computer aided design of an EWOD microdevice, in Sensors and Actuators A. 2006. p. 283-294.
14. Berthier, J., Microdrops ans digital microfluids. 2008: William Andrew Inc.
15. Roman O. Grigoriev, Michael F. Schatza, and V. Sharmab, Chaotic mixing in microdroplets. The Royal Society of Chemistry 2006, 2006. 6: p. 1369-1372.
16. Vamsee K. Pamular, et al., Microfluidic electrowetting-based droplet mixing. Microelectromechanical Systems Conference, 2001, 2002: p. 8-10.
17. Phil Paik, et al., Electrowetting-based droplet mixers for microfluidic systems. The Royal Society of Chemistry 2003, 2003. 3: p. 28-33.
18. Phil Paik, Vamsee K. Pamula, and and Richard B. Fair, Rapid droplet mixers for digital microfluidic systems. The Royal Society of Chemistry 2003, 2003. 3: p. 253-259.
19. Jesse Fowler, Hyejin Moon, and Chang-Jin Kim. Enhancement of mixing by dropler-based microfluidics. in IEEE. 2002.
20. Cooney, C.G., et al., Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluid, 2006. 2: p. 435-446.
21. Huseyin Akilli, Atakan Akar, and C. Karakus, Flow characteristics of circular cylinders arranged side-by-side in shallow water. Flow Measurement and Instrumentation, 2004. 15: p. 187-197.
22. Md. Mahbub Alam and Y. Zhou, Flow around two side-by-side closely spaced circular cylinders. Journal of Fluids and Structures, 2007. 23: p. 799-805.
23. Richard B. Fair, et al., Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform, in Lab-on-a-Chip: Platforms, Devices, and Applications. 2004. p. 113-124.
24. Vijay Srinivasan, et al., Protein stamping for maldi mass spectrometry using an electrowetting-based microfluidic platform, in Lab-on-a-Chip: Platforms, Devices, and Applications. 2004. p. 26-32
25. Moon, H., et al., An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip, 2006. 6: p. 1213-1219.
26. Yi Zhong Wang, Yuejun Zhao, and S.K. Cho, In-Droplet magnetic beads concentration and separation for digital micro fludics, in Transducer & Eurosensors'07. 2007. p. 711-714.
27. Po-Weng Huang, et al. Dielectrophoretic cell concentrator on EWOD-Based chips. in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006. China.
28. Yen-Chen Lin, et al. Integrated digital and analog microfluidics by EWOD and LDEP. in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006. China.
29. 陳偉銘 and 趙涵捷, 影像裡的數學世界, ed. 中華民國中山學術文化基金會中山文庫. 2001: 台灣書店.