簡易檢索 / 詳目顯示

研究生: 朱菀婷
Wan-Ting Chu
論文名稱: 共平面式電極介電濕潤法之微液滴流場探討
The fluidic phenomena on coplanar type electrodes based of electrowetting-on-dielectric device
指導教授: 饒達仁
Da-Jeng Yao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 81
中文關鍵詞: 電濕潤共平面電極外加結構微液滴
外文關鍵詞: electrowetting, (EWOD), coplanar electrode, additional structures, microdroplet.
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是以介電濕潤(Electrowetting-on-dielectric, EWOD)為基礎,設計介電濕潤共平面式晶片,藉由在微液滴裡加入適量的微粒,探討當微液滴在不同情況下移動時,微液滴裡的流場情況。
    實驗中主要是將電極設計在同一平面上,在上方加入疏水上蓋且無電極的平板,進而操控微液滴的產生、移動、混合與分離等動作,如此ㄧ來,此類介電濕潤共平面式晶片,將更有靈活的設計空間,以整合其他檢測系統,達到實驗室晶片(Lab on a Chip)的總目標。
    當微液滴移動時,微液滴裡流場的變化情形,並且藉由移動到不同方向的電極,觀察此差異。此外在疏水上蓋設計且製作柱狀結構來干擾微液滴移動,並觀察流場變化。在微液滴裡面加入適量的微粒,觀察並探討當定量的微液滴在通過不同間距下的外加結構時,利用微粒的移動情形來探討微液滴內的流場情形,並對其造成的影響。
    由於在生醫檢測上要使流體混合均勻且快速的方法,通常是設計十字型的電極,使微液滴來回的移動,達到微液滴混合均勻的效果。但是本研究希望以此數位微流體技術結合外加結構來操控微液滴,使微液滴的混合更快速,需要的電極數目也較少,使得整套系統可應用於生醫方面的檢測與應用。


    摘要 i Abstract ii 圖目錄 vi 表目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究目標 3 1.4 本文架構 3 第二章 文獻回顧 4 2.1 介電濕潤現象操控微液滴 4 2.2 不同介電材料對介電溼潤的影響 8 2.3 介電濕潤對微液滴流場的影響 13 2.4 介電濕潤對微液滴混合的影響 16 2.5 外加結構對流體的影響 23 2.6 介電濕潤相關應用 25 2.7 文獻總結 27 第三章 基本原理 28 3. 1 介電濕潤現象 28 3. 2 楊氏係數(Young’s Equation) 29 3. 3 接觸角與液滴移動 30 3. 4 微粒與擴散時間的關係 34 第四章 實驗設計與架構 35 4. 1 介電濕潤共平面式電極晶片設計與製程 36 4.1.1 電極形狀與尺寸設計 36 4.1.2 介電濕潤共平面式電極晶片製程設計 40 4. 2 疏水上蓋設計與製程 41 4.2.1. 外加結構形狀與尺寸設計 41 4.2.2. 外加結構製程設計 42 4. 3 實驗裝置與操控介面設計 43 第五章 實驗結果與討論 45 5. 1 製程結果 45 5.1.1 介電濕潤共平面式電極晶片製程 45 5.1.2 疏水上蓋製程 45 5. 2 微液滴之基本操控 48 5. 3 接觸角量測結果 51 5. 4 影像處理 52 5. 5 無外加結構實驗 53 5.5.1 ㄧ維實驗 53 5.5.2 二維實驗 57 5.5.2.1 二維路徑-I 58 5.5.2.2 二維路徑-II 61 5. 6 外加圓柱結構實驗 65 5.6.1 外加圓柱-I 66 5.6.1.1 外加圓柱放置於兩火線電極間 66 5.6.1.2 外加圓柱放置於兩地線電極間 70 5.6.2 外加圓柱-II 73 第六章 結論與未來展望 78 參考文獻 79

    1. Feynman, R., There's plenty of room at the bottom. Journal of Microelectromechanical Systems, 1992. 1(1): p. 60-66.
    2. Feynman, R., Infinitesimal machinery. Journal of Micro Electro Mechanical Systems, 1993. 2(1): p. 4-14.
    3. Washizu, M., Electrostatic actuation of liquid droplets for microreactor applications IEEE Transactions on Industry Applications, 1998. 34(4): p. 732-737.
    4. Jones, T.B., et al., Dielectrophoretic liquid actuation and nanodroplet formation. Journal of Applied Physics, 2001. 89(2): p. 1441-1448.
    5. Sung Kwon Cho, et al., Spillting a liquid droplet for electrowetting-based microfluidics, in Mechanical Engineering Congress and Exposition. 2001. p. IMECE2001/MEMS-23830.
    6. M. G. Pollack, A.D. Shenderov, and R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. The Royal Society of Chemistry 2002, 2002. 2: p. 96-101.
    7. Cho, S.K., H. Moon, and C.-J. Kim, Creating, transporting, cutting and merging liquid droplets by Electrowetting-Based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003. 12: p. 70-80.
    8. Lee, J. and C.-J. Kim, Surface Tension Driven Microactuation Based on Continuous Electrowetting (CEW). Journal of Microelectromechanical Systems, 2000. 9(2): p. 171-180.
    9. Lee, J., et al., Electrowetting and Electrowetting-on-Dielectric for microscale liquid handling. Sensors and Actuators A: Physical, 2002. 95(2): p. 259-268.
    10. A. G. Papathanasiou, A. T. Papaioannou, and A.G. Boudouvis, Illuminating the connection between contact angle saturation and dielectric breakdown in electrowetting through leakage current measurements. JOURNAL OF APPLIED PHYSICS, 2008. 103: p. 34901-1-4.
    11. Chuang, K.C. and S.K. Fan, Direct handwriting manipulation of droplets by Self-Aligned Mirror-EWOD across a dielectric sheet, in MEMS 2006. 2006. p. 538-541.
    12. Cheng-Pu Chiu, Shang-Chih Lin, and S.-K. Fan. Droplet manipulation by electrowetting on polymer dispersed liquid crystal. in Transducer & Eurosensors'07. 2007. France.
    13. J. Berthier , et al., Computer aided design of an EWOD microdevice, in Sensors and Actuators A. 2006. p. 283-294.
    14. Berthier, J., Microdrops ans digital microfluids. 2008: William Andrew Inc.
    15. Roman O. Grigoriev, Michael F. Schatza, and V. Sharmab, Chaotic mixing in microdroplets. The Royal Society of Chemistry 2006, 2006. 6: p. 1369-1372.
    16. Vamsee K. Pamular, et al., Microfluidic electrowetting-based droplet mixing. Microelectromechanical Systems Conference, 2001, 2002: p. 8-10.
    17. Phil Paik, et al., Electrowetting-based droplet mixers for microfluidic systems. The Royal Society of Chemistry 2003, 2003. 3: p. 28-33.
    18. Phil Paik, Vamsee K. Pamula, and and Richard B. Fair, Rapid droplet mixers for digital microfluidic systems. The Royal Society of Chemistry 2003, 2003. 3: p. 253-259.
    19. Jesse Fowler, Hyejin Moon, and Chang-Jin Kim. Enhancement of mixing by dropler-based microfluidics. in IEEE. 2002.
    20. Cooney, C.G., et al., Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluid, 2006. 2: p. 435-446.
    21. Huseyin Akilli, Atakan Akar, and C. Karakus, Flow characteristics of circular cylinders arranged side-by-side in shallow water. Flow Measurement and Instrumentation, 2004. 15: p. 187-197.
    22. Md. Mahbub Alam and Y. Zhou, Flow around two side-by-side closely spaced circular cylinders. Journal of Fluids and Structures, 2007. 23: p. 799-805.
    23. Richard B. Fair, et al., Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform, in Lab-on-a-Chip: Platforms, Devices, and Applications. 2004. p. 113-124.
    24. Vijay Srinivasan, et al., Protein stamping for maldi mass spectrometry using an electrowetting-based microfluidic platform, in Lab-on-a-Chip: Platforms, Devices, and Applications. 2004. p. 26-32
    25. Moon, H., et al., An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip, 2006. 6: p. 1213-1219.
    26. Yi Zhong Wang, Yuejun Zhao, and S.K. Cho, In-Droplet magnetic beads concentration and separation for digital micro fludics, in Transducer & Eurosensors'07. 2007. p. 711-714.
    27. Po-Weng Huang, et al. Dielectrophoretic cell concentrator on EWOD-Based chips. in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006. China.
    28. Yen-Chen Lin, et al. Integrated digital and analog microfluidics by EWOD and LDEP. in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006. China.
    29. 陳偉銘 and 趙涵捷, 影像裡的數學世界, ed. 中華民國中山學術文化基金會中山文庫. 2001: 台灣書店.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE