研究生: |
郭鈞 Kuo, Chun |
---|---|
論文名稱: |
石墨烯在兆赫波段光電特性之量測及其在兆赫波段液晶相位調制器之應用 Characterization of Graphene Layers in Liquid Crystal Terahertz Phase Shifters |
指導教授: |
潘犀靈
Pan, Ci-Ling |
口試委員: |
趙如蘋
Pan, Ru-Pin 張存續 Chang, Tsun-Hsu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 兆赫波 、石墨烯 、液晶 、相位調制器 |
外文關鍵詞: | terahertz, graphene, liquid crystal, phase shifter |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯同時具有優異的光學穿透率、導電率以及載子遷移率等特性,使得它有相當高的潛力可以廣泛應用於各種元件,包含高功率元件、光電感應器,兆赫波段元件等。在本論文中我們研究利用石墨烯製作於兆赫波段的液晶相位調制器。
我們藉由整合光導天線與雷射光激發電漿兆赫波時域光譜儀量測結果分析而獲得單層與雙層石墨烯薄膜在0.2 - 1.4 THz 波段的光學穿透係數,並分析之可得到樣品之寬頻複數導電率。利用Drude自由電子模型(Drude free-electron model)擬合可進而獲取其電性參數,諸如電漿頻率、散射時間、載子遷移率,以及直流導電率。相比另一種兆赫波段透明電極,銦錫氧化物奈米晶鬚(Indium-tin-oxide nanowhiskers),石墨烯的穿透率較低,但是具有更高的導電率以及載子遷移率。
接著,我們利用石墨烯作為透明電極製作兆赫波段相位調制器,並以光導天線兆赫波時域光譜儀量測其調制相位隨外加電壓的變化。施加約莫2.2伏特的偏壓於石墨烯相位調制器即可改變1.0 THz的訊號達相位π/2,相較之下,早先研究的銦錫氧化物奈米晶鬚相位調制器則需要約5.6伏特才可達到相位π/2。另一方面,我們使用多夾層結構提升銦錫氧化物奈米晶鬚相位調制器達相位2π調控,其工作電壓約為2.6伏特。此工作電壓可與薄膜電晶體以及互補式金屬氧化物半導體技術相匹配。我們用來擬合實驗數據的液晶隨電壓偏轉模型,理論趨勢與實驗結果非常相符。
The graphene sheet, which exhibits outstanding properties, such as high transparency in both visible and terahertz (THz) regions and superb electrical conductivity, are measured by terahertz time-domain spectroscopy (THz-TDS) based on photoconductive (PC) antenna and laser-induced air-plasma, respectively. The optical and electrical properties of monolayer and bilayer graphene films in the THz frequency range of 0.3~ 1.4 THz are investigated. Complex conductivities of the graphene samples can be extracted from the TDS measurements and fitted with the Drude free-electron model. Electrical properties of the samples, such as plasma frequency (ωp), scattering time (τ), dc mobility (μ), and dc conductivity (σ0), are obtained. Comparing to the indium-tin-oxide nanowhiskers (ITO NWhs), another promising candidate as transparent conductor for THz optoelectronic devices, graphene has lower transmittance but much higher conductivity and mobility.
Furthermore, we have constructed and characterized THz phase shifters based on liquid crystals (LCs) with graphene grown by chemical vapor deposition (CVD) and indium-tin-oxide nanowhiskers (ITO NWhs) obliquely evaporated by electron-beam glancing-angle deposition (GLAD) as transparent conducting electrodes. A graphene-based phase shifter can achieve a phase shift of π/2 at 1.0 THz with the operating voltage of ~2.2 V (rms) versus ~ 5.6 V (rms) for ITO-NWhs-based phase shifter in previous work. On the other hand, 2π phase shift at 1.0 THz was achieved in an ITO-NWhs-based phase shifter with a multi-sandwiched structure by applying ~2.6 V (rms). The low operation voltage of both two kinds of phase shifters imply the compatibility with thin-film transistor (TFT) and complementary metal-oxide-semiconductor (CMOS) technologies. The experimental results of phase shifters are in good agreement with the theoretical predictions.
[1] Jefferson. (2003). Terahertz radiation frequency range. Available: http://wwwold.jlab.org/news/releases/2003/03felthz.html
[2] D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, "Gas sensing using terahertz time-domain spectroscopy," Applied Physics B-Lasers and Optics, vol. 67, pp. 379-390, Sep 1998.
[3] J. H. Strait, P. A. George, M. Levendorf, M. Blood-Forsythe, F. Rana, and J. Park, "Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy," Nano Letters, vol. 9, pp. 2967-2972, Aug 2009.
[4] K. Ajito and Y. Ueno, "THz Chemical Imaging for Biological Applications," Ieee Transactions on Terahertz Science and Technology, vol. 1, pp. 293-300, Sep 2011.
[5] B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt Lett, vol. 20, p. 1716, Aug 15 1995.
[6] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, et al., "Short-range ultra-broadband terahertz communications: Concepts and perspectives," Ieee Antennas and Propagation Magazine, vol. 49, pp. 24-39, Dec 2007.
[7] D. H. Auston, K. P. Cheung, and P. R. Smith, "Picosecond Photoconducting Hertzian Dipoles," Applied Physics Letters, vol. 45, pp. 284-286, 1984.
[8] X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, "Generation of Femtosecond Electromagnetic Pulses from Semiconductor Surfaces," Applied Physics Letters, vol. 56, pp. 1011-1013, Mar 12 1990.
[9] A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, et al., "Terahertz Optical Rectification from (110) Zincblende Crystals," Applied Physics Letters, vol. 64, pp. 1324-1326, Mar 14 1994.
[10] R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, et al., "Terahertz semiconductor-heterostructure laser," Nature, vol. 417, pp. 156-159, May 9 2002.
[11] Q. Wu and X. C. Zhang, "Free-Space Electro-optic Sampling of Terahertz Beams," Applied Physics Letters, vol. 67, pp. 3523-3525, Dec 11 1995.
[12] D. E. Spence, J. M. Evans, W. E. Sleat, and W. Sibbett, "Regeneratively Initiated Self-Mode-Locked Ti-Sapphire Laser," Optics Letters, vol. 16, pp. 1762-1764, Nov 15 1991.
[13] G. P. Williams, "High-power terahertz synchrotron sources," Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, vol. 362, pp. 403-413, Feb 15 2004.
[14] B. N. Murdin, "Far-infrared free-electron lasers and their applications," Contemporary Physics, vol. 50, pp. 391-406, 2009.
[15] G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, et al., "THz and sub-THz quantum cascade lasers," Laser & Photonics Reviews, vol. 3, pp. 45-66, Mar 2009.
[16] C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. S. Yu, and C. L. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes," Optics Letters, vol. 39, pp. 2511-2513, Apr 15 2014.
[17] C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, "Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter," Optics Express, vol. 12, pp. 2625-2630, Jun 14 2004.
[18] C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Optics Letters, vol. 31, pp. 1112-1114, Apr 15 2006.
[19] H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, "Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter," Ieee Photonics Technology Letters, vol. 18, pp. 1488-1490, Jul-Aug 2006.
[20] X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, et al., "Self-polarizing terahertz liquid crystal phase shifter," Aip Advances, vol. 1, Sep 2011.
[21] K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, "Polymer stabilized liquid crystal phase shifter for terahertz waves," Optics Express, vol. 21, pp. 12395-12400, May 20 2013.
[22] Y. Wu, X. Z. Ruan, C. H. Chen, Y. J. Shin, Y. Lee, J. Niu, et al., "Graphene/liquid crystal based terahertz phase shifters," Optics Express, vol. 21, pp. 21395-21402, Sep 9 2013.
[23] C. Y. Chen, C. L. Pan, C. F. Hsieh, Y. F. Lin, and R. P. Pan, "Liquid-crystal-based terahertz tunable Lyot filter," Applied Physics Letters, vol. 88, Mar 6 2006.
[24] C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, "Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating," Optics Express, vol. 16, pp. 2995-3001, Mar 3 2008.
[25] H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nature Photonics, vol. 3, pp. 148-151, Mar 2009.
[26] R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, "Liquid crystal based electrically switchable Bragg structure for THz waves," Optics Express, vol. 17, pp. 7377-7382, Apr 27 2009.
[27] C. F. Hsieh, Y. C. Lai, R. P. Pan, and C. L. Pan, "Polarizing terahertz waves with nematic liquid crystals," Optics Letters, vol. 33, pp. 1174-1176, Jun 1 2008.
[28] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar 2007.
[29] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, Oct 22 2004.
[30] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, et al., "Graphene-based liquid crystal device," Nano Letters, vol. 8, pp. 1704-1708, Jun 2008.
[31] J. L. Tomaino, A. D. Jameson, J. W. Kevek, M. J. Paul, A. M. van der Zande, R. A. Barton, et al., "Terahertz imaging and spectroscopy of large-area single-layer graphene," Optics Express, vol. 19, pp. 141-146, Jan 3 2011.
[32] C. G. Granqvist, "Transparent conductors as solar energy materials: A panoramic review," Solar Energy Materials and Solar Cells, vol. 91, pp. 1529-1598, Oct 15 2007.
[33] J. George and C. S. Menon, "Electrical and optical properties of electron beam evaporated ITO thin films," Surface & Coatings Technology, vol. 132, pp. 45-48, Oct 2 2000.
[34] C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, "Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium Tin Oxide Thin Films from the Visible to the Far-Infrared," Ieee Journal of Quantum Electronics, vol. 46, pp. 1746-1754, Dec 2010.
[35] A. R. Schlatmann, D. W. Floet, A. Hilberer, F. Garten, P. J. M. Smulders, T. M. Klapwijk, et al., "Indium contamination from the indium-tin-oxide electrode in polymer light-emitting diodes," Applied Physics Letters, vol. 69, pp. 1764-1766, Sep 16 1996.
[36] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J. A. Goitia, "Degradation and failure of MEH-PPV light-emitting diodes," Journal of Applied Physics, vol. 79, pp. 2745-2751, Mar 1 1996.
[37] J. W. Leem and J. S. Yu, "Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/mu c-Si:H tandem thin film solar cells," Optics Express, vol. 19, pp. A258-A268, May 9 2011.
[38] S. H. Lee and N. Y. Ha, "Nanostructured indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes," Optics Express, vol. 19, pp. 21803-21808, Oct 24 2011.
[39] Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, T. Y. Tsai, et al., "Implementation of an indium-tin-oxide (ITO) direct-Ohmic contact structure on a GaN-based light emitting diode," Optics Express, vol. 19, pp. 14662-14670, Jul 18 2011.
[40] C. S. Yang, M. H. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, C. H. Shen, et al., "Non-Drude Behavior in Indium-Tin-Oxide Nanowhiskers and Thin Films Investigated by Transmission and Reflection THz Time-Domain Spectroscopy," Ieee Journal of Quantum Electronics, vol. 49, pp. 677-690, Aug 2013.
[41] C. S. Yang, C. H. Chang, M. H. Lin, P. C. Yu, O. Wada, and C. L. Pan, "THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure," Optics Express, vol. 20, pp. A441-A451, Jul 2 2012.
[42] F. Reinitzer, "Beiträge zur Kenntniss des Cholesterins," Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, vol. 9, pp. 421-441, 1888/12/01 1888.
[43] P. G. d. Gennes, The Physics of Liquid Crystals: Clarendon Press, 1974.
[44] S. Chandrasekhar, Liquid Crystals: Cambridge University Press, 1977.
[45] (Laboratory for Laser Energetics of the University of Rochester, Chirp pulse amplification, (http://www.lle.rochester.edu/around_the_lab/?month=10&year=2010)).
[46] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, Jun 5 2009.
[47] M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, "Transfer-Free Batch Fabrication of Single Layer Graphene Transistors," Nano Letters, vol. 9, pp. 4479-4483, Dec 2009.
[48] Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, et al., "Wafer-Scale Synthesis and Transfer of Graphene Films," Nano Letters, vol. 10, pp. 490-493, Feb 2010.
[49] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, Nov 3 2006.
[50] A. Mayer and F. Keilmann, "Far-Infrared Nonlinear Optics .1. Chi(2) near Ionic Resonance," Physical Review B, vol. 33, pp. 6954-6961, May 15 1986.
[51] T. Dekorsy, V. A. Yakovlev, W. Seidel, M. Helm, and F. Keilmann, "Infrared-phonon-polariton resonance of the nonlinear susceptibility in GaAs," Physical Review Letters, vol. 90, Feb 7 2003.
[52] J. R. Morris and Y. R. Shen, "Far-infrared generation by picosecond pulses in electro-optical materials," Optics Communications, vol. 3, pp. 81-84, 4// 1971.
[53] D. H. Auston and P. R. Smith, "Generation and Detection of Millimeter Waves by Picosecond Photoconductivity," Applied Physics Letters, vol. 43, pp. 631-633, 1983.
[54] C. Fattinger and D. Grischkowsky, "Terahertz Beams," Applied Physics Letters, vol. 54, pp. 490-492, Feb 6 1989.
[55] D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media," Physical Review Letters, vol. 53, pp. 1555-1558, 1984.
[56] Y.-S. Lee, Principles of terahertz science and technology: springer, 2009.
[57] H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, "Short-Pulse Terahertz Radiation from High-Intensity-Laser-Produced Plasmas," Physical Review E, vol. 49, pp. 671-677, Jan 1994.
[58] T. Loffler, F. Jacob, and H. G. Roskos, "Generation of terahertz pulses by photoionization of electrically biased air," Applied Physics Letters, vol. 77, pp. 453-455, Jul 17 2000.
[59] T. Loffler and H. G. Roskos, "Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma," Journal of Applied Physics, vol. 91, pp. 2611-2614, Mar 1 2002.
[60] D. J. Cook and R. M. Hochstrasser, "Intense terahertz pulses by four-wave rectification in air," Optics Letters, vol. 25, pp. 1210-1212, Aug 15 2000.
[61] M. D. Thomson, M. Kress, T. Loffler, and H. G. Roskos, "Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications," Laser & Photonics Reviews, vol. 1, pp. 349-368, Dec 2007.
[62] M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, "Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves," Optics Letters, vol. 29, pp. 1120-1122, May 15 2004.
[63] T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, "Generation of single-cycle THz transients with high electric-field amplitudes," Optics Letters, vol. 30, pp. 2805-2807, Oct 15 2005.
[64] X. Xie, J. M. Dai, and X. C. Zhang, "Coherent control of THz wave generation in ambient air," Physical Review Letters, vol. 96, Feb 24 2006.
[65] K. Reimann, "Table-top sources of ultrashort THz pulses," Reports on Progress in Physics, vol. 70, pp. 1597-1632, Oct 2007.
[66] K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, "Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields," Optics Express, vol. 15, pp. 4577-4584, Apr 16 2007.
[67] K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, "Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions," Nature Photonics, vol. 2, pp. 605-609, Oct 2008.
[68] K. Y. Kim, "Generation of coherent terahertz radiation in ultrafast laser-gas interactions," Physics of Plasmas, vol. 16, May 2009.
[69] I. Babushkin, W. Kuehn, C. Kohler, S. Skupin, L. Berge, K. Reimann, et al., "Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases," Physical Review Letters, vol. 105, Jul 28 2010.
[70] Y. Minami, M. Nakajima, and T. Suemoto, "Effect of preformed plasma on terahertz-wave emission from the plasma generated by two-color laser pulses," Physical Review A, vol. 83, Feb 28 2011.
[71] J. M. Dai, N. Karpowicz, and X. C. Zhang, "Coherent Polarization Control of Terahertz Waves Generated from Two-Color Laser-Induced Gas Plasma," Physical Review Letters, vol. 103, Jul 10 2009.
[72] M. Vanexter and D. Grischkowsky, "Carrier Dynamics of Electrons and Holes in Moderately Doped Silicon," Physical Review B, vol. 41, pp. 12140-12149, Jun 15 1990.
[73] S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, "Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy," Applied Physics Letters, vol. 79, pp. 3923-3925, Dec 10 2001.
[74] M. Dressel and M. Scheffler, "Verifying the Drude response," Annalen Der Physik, vol. 15, pp. 535-544, Jul-Aug 2006.
[75] P. Yeh and C. Gu, "Appendix B," in Optics of Liquid Crystal Displays, ed: Wiley, 2009.
[76] C. P. Ku, C. C. Shih, C. J. Lin, R. P. Pan, and C. L. Pan, "THz Optical Constants of the Liquid Crystal MDA-00-3461," Molecular Crystals and Liquid Crystals, vol. 541, pp. 303-308, 2011.
[77] E. Tiras, S. Ardali, T. Tiras, E. Arslan, S. Cakmakyapan, O. Kazar, et al., "Effective mass of electron in monolayer graphene: Electron-phonon interaction," Journal of Applied Physics, vol. 113, Jan 28 2013.
[78] M. Tahir and K. Sabeeh, "Inter-band magnetoplasmons in mono- and bilayer graphene," Journal of Physics-Condensed Matter, vol. 20, Oct 22 2008.
[79] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, "A self-consistent theory for graphene transport," Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 18392-18397, Nov 20 2007.
[80] K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, "Mobility Variations in Mono- and Multi-Layer Graphene Films," Applied Physics Express, vol. 2, Feb 2009.
[81] X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, et al., "Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper," Journal of the American Chemical Society, vol. 133, pp. 2816-2819, Mar 9 2011.
[82] C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, "Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment," Applied Physics Letters, vol. 104, p. 141106, 2014.
[83] J. M. Dai, J. Liu, and X. C. Zhang, "Terahertz Wave Air Photonics: Terahertz Wave Generation and Detection With Laser-Induced Gas Plasma," Ieee Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 183-190, Jan-Feb 2011.
[84] M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, et al., "Highly birefringent, low-loss liquid crystals for terahertz applications," Apl Materials, vol. 1, Jul 2013.