簡易檢索 / 詳目顯示

研究生: 洪瑞廷
論文名稱: 鈣硼矽玻璃粉末在水溶液中之溶解及分散行為
指導教授: 簡朝和
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 57
中文關鍵詞: 鈣硼矽玻璃分散流變行為旋轉半徑聚乙烯胺
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文乃探討如何將鈣硼矽玻璃粉末在水溶液中有效的分散。首先針對實驗中所使用的鈣硼矽玻璃粉末之基本性質作深入地了解。發現此玻璃粉體在水溶液中之表面電位大致上為負值,因此我們在選用分散劑時,則以帶有正電的聚乙烯胺(PEI)作為使用之首選。
    進一步我們利用本質黏度及小角度x光散射法測量PEI在不同pHeq值之水溶液中的旋轉半徑,發現其大小會隨溶液pHeq值的減小而增大。然而量測PEI在粉體表面之吸附量後由公式推得之PEI旋轉半徑,則與前述結果有所出入。經分析後發現,由於在酸性溶液中,粉體會有大量的Ca2+、B3+離子溶出,造成PEI有團聚結構,而使此時PEI的吸附量異常變大。
    而就CBSG漿料流變行為,則由粉體溶解及PEI的帶電情形作匹配,可在漿料之pHeq= 7.8 - 10.6的區間中,得到使漿料穩定所需之PEI添加量的穩定分佈圖。然改變漿料固含量亦會影響穩定分佈圖之分佈。由結果發現,PEI與CBSG漿料系統之最大穩定固含量約為45vol%。


    論文摘要 i 目錄 ii 圖目錄 iv 表目錄 vi 一、簡介 1 二、文獻回顧 3 2.1分散原理 3 2.2吸附理論 5 2.3流變行為與分散性質量測理論 7 三、實驗設計、方法及步驟 9 3.1實驗設計 9 3.2實驗材料 10 3.3粉體溶解量之量測 10 3.4粉體列塔電位之量測 11 3.5 PEI質子化的量測 11 3.6 PEI旋轉半徑之量測 11 3.7 PEI在粉體表面吸附行為之量測 12 3.8漿料流變行為之量測 12 3.9粉體表面微結構之觀察 13 四、實驗結果與討論 14 4.1 實驗材料其本性質 14 4.1.1 CBSG粉末溶解行為及其表面性質 14 4.1.2 PEI質子化及旋轉半徑量測 15 4.2粉體與分散劑間之交互作用 16 4.2.1 PEI添加對粉體列塔電位之影響 16 4.2.2 PEI在粉體表面之吸附行為 17 4.2.3 PEI的添加對粉體溶解行為的影響 19 4.3 分散結果及漿料流變行為 20 4.3.1 PEI的添加對漿料流變及沉降行為之影響 20 4.3.2 CBSG漿料穩定相圖 21 4.3.3 漿料固含量對穩定相圖之影響 22 五、結論 24 六、參考文獻 26

    [1] R. Moreno, ” The Role of Slip Additives in Tape-Casting Technology : Part 1-Solvents and Dispersants,” Am. Ceram. Soc. Bull., 71 [10], 1521-1531, (1992).

    [2] R. Moreno, “ The Role of Slip Additives in Tape-Casting Technology : Part 2-Binders and Plasticizers ,“ Am. Ceram. Soc. Bull., 71 [11], 1647-1657, (1992).

    [3] J.S. Reed, Principles of Ceramics Processing, John Wiley & Sons, Inc, (1995).

    [4] D.J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworth & Co. Ltd, (1980).

    [5] P.C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker Inc., New York, (1986).

    [6] F.M.M Morel and J.G. Hering, Principles and Applications of Aqueous Chemistry, John Wiley & Sons, Inc, (1993).

    [7] C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations, John Wiley & Sons, Inc, (1976).

    [8] T. Sato and R. Ruch, Stability of Colloidal Dispersions by Polymer Adsorption, Marcel Dekker Inc., New York, (1980).

    [9] J.H. Jean,” Crystallization of Boric acid on low-K Glass plus Ceramic Green Tapes,” Jpn. J. Appl. Phys., 35, Pt. 2, No. 4A, L429-L431 (1996).

    [10] S. Kwon and G.L. Messing, “ The Effect of Particle Solubility on the Strength of Nanocrystalline Agglomerates: Boehmite,” Nano. Mat., 8 [4], 399-418, (1997).

    [11] J.H. Jean and H.R. Wang, ”Stabilization of Aqueous BaTiO3 Suspensions with Ammonium Salt of Poly(acrylic acid) at Various ph Values,” J. Mater. Res., 13 [8], 2245-2250, (1998).
    [12] J.H. Jean and H.R. Wang, “ Dispersion of Aqueous Barium-Titanate Suspensions with Ammonium Salt of Poly(methacrylic acid),” J. Am. Ceram. Soc., 81 [6], 1589-1599, (1998).

    [13] F. Tang, T. Uchikoshi, and Y. Sakka,” Electrophoretic Deposition Behavior of Aqueous Nanosized Zinc Oxide Suspensions,” J. Am. Ceram. Soc., 85 [9], 2161-2165 (2002).

    [14] J.X. Zhang, D.L. Jiang, S.H. Tan, L.H. Gui, and M.L. Ruan,” Aqueous Processing of Titanium Carbide Green Sheets,” J. Am. Ceram. Soc., 84 [11], 2537-2541 ,(2001).

    [15] R.J. Hunter, Introduction to Modern Colloid Science , Oxford University Press Inc., New York, (1993).

    [16] J.A. Lewis, ”Colloidal Processing of Ceramics,” J. Am. Ceram. Soc., 83 [10], 2341-2359, (2000).

    [17] J. Schmitz, H. Frommelius, U. Pegelow, H.Schulte, and R. H fer, “A New Concept for Dispersing Agents in Aqueous Coating,” Pro. Org. Coa. 35, 191-196, (1999).

    [18] L.H. Sperling, Introduction to Physical Polymer Science , John Wiley & Sons, Inc, (1993).

    [19] P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, (1953).

    [20] S.M. Olhero and J.M.F. Ferreira,” Influence of Particle size Distribution on Rheology and ParticlePacking of Silica-based Suspensions,” Powder Tech., 139 [1], 69-75, (2004).

    [21] V.M. Gun’ko, V.I. Zarko, V.V. Turov, R. Leboda, E. Chibowski, and V.V. Gun’ko,” Aqueous Suspensions of Highly Disperse Silica and Germania/Silica,” J. Colloid Interface Sci., 205 [1], 106-120, (1998).

    [22] G.M. Kindquist and R.A. Stratton, “The Role of Polyelectrolyte Charge Density and Molecular Weight on the Adsorption and Flocculation Colloidal Silica with Polyethyleneimine,” J. Colloid Interface Sci., 55 [1], 45-59, (1975).

    [23] A. Guinier, Small-angle Scattering of X-rays, John Wiley, New York, (1955).

    [24] S. Kobayashi, K.D. Suh, and Y.Shirokura, “ Chelating Ability of Poly(vinylamine) : Effects of Polyamine Structure on Chelation,” Macromolecules , 22, 2363-2366, (1989).

    [25] J.H. Jean and C.C. Li, “Interaction between Dissolved Ba2+ and PAA-NH4 Dispersant in Aqueous Barium Titanate Suspension,” J. Am. Ceram. Soc., 85 [6], 1449-1455, (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE