簡易檢索 / 詳目顯示

研究生: 紀岩勳
Chi, Yen-Hsun
論文名稱: 以改良式無電電鍍法製備高熱穩定性之鈀複合薄膜
Prepation of thin dense palladium composite membranes with enhanced stability by an improved electroless plating technique
指導教授: 黃金花
Huang, Jin-Huang
口試委員: 曹芳海
陳維新
楊昌中
鄭光煒
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 136
中文關鍵詞: 氫氣鈀膜多孔不銹鋼無電電鍍
外文關鍵詞: hydrogen, palladium, porous stainless steel, electroless plating
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以改良式無電電鍍法製備出同時具有高氫氣滲透率與高熱穩定性之鈀/多孔不銹鋼複合膜。研究內容分成三部份,由於多孔不銹鋼基材之孔徑分佈不均,故首先探討利用兩階段方式修飾多孔不銹鋼管之可行性,其概念是先利用10 μm之氧化鋁粒子將多孔不銹鋼之表面大孔加以修飾,待大孔形成均勻小孔後,再利用1 μm之氧化鋁粒子將表面粗糙度降低。其次則是利用層狀雙金屬氫氧化物(LDH)取代1 m之氧化鋁粒子進行第二階段之多孔不銹鋼管表面修飾,探討LDH層作為表面修飾層與中間阻障層之實用性。最後則是探討在無電電鍍程序中,若施一轉速(0-200 rpm)於經修飾後之多孔不銹鋼基材上,不同轉速對鈀金屬沉積速率與鈀膜層微結構之影響。
    在「以兩階段方式修飾多孔不銹鋼基材」部份,實驗結果顯示利用10 m與1 m氧化鋁粒子兩階段修飾多孔基材表面,可將原有基材平均孔徑10-20 m減小至1 m以下。以無電電鍍法析鍍鈀金屬於該基材,膜厚僅4.4 μm時即可獲得緻密鈀膜,其薄膜結構為Pd/1 m Al2O3/10 m Al2O3/PSS。在溫度500C時,薄膜之氫氣滲透率可達75.5 m3/m2 h bar0.5且選擇率(H2/He)為1124。相較於未經修飾之多孔不銹鋼管,膜厚在31.5 m時才可達相同緻密程度,且氫氣滲透率僅有15.3 m3/m2 h bar0.5。實驗結果證明兩階段修飾法不僅可有效修飾基材表面,還可保有原先基材透氫量80%,此結果使達緻密時所需膜厚下降約7倍,氫氣滲透率亦提升約5倍。
    其次在「利用層狀雙金屬氫氧化物(LDH)取代1 μm之氧化鋁粒子」部份,實驗結果顯示利用10 μm氧化鋁粒子與LDH層修飾後之多孔不銹鋼表面,可將原有基材平均孔徑10-20 m減小至1-3 m。以無電電鍍法沉積鈀金屬於該基材表面上,膜厚約在7.85 m時即可獲得緻密鈀膜,其結構為Pd/LDH/10 m Al2O3/PSS。在溫度400C時,薄膜之氫氣滲透率可達76.7 m3/m2 h bar0.5且選擇率(H2/He)為3817。將此鈀膜管在400C純氫氣氛下長期測試1500小時,實驗結果顯示,氫氣通量與H2/He選擇率皆為一定值,證明利用LDH層進行表面修飾,不僅可有效修飾基材表面亦可做為中間阻障層,避免在高溫下鈀膜層與多孔基材發生金屬互擴散而降低鈀膜管之氫氣滲透率。
    最後「在無電電鍍程序中,若施一轉速於經修飾後之多孔不銹鋼基材上,不同轉速對鈀金屬沉積速率之影響」部份,實驗結果顯示,鈀金屬之析鍍速率會隨轉速增加而增加,意即在相同析鍍時間下,其鈀金屬轉化效率可有效提升。利用無電電鍍法配合旋轉多孔不銹鋼基材方式,可鍍製出膜厚僅5.0 m之緻密鈀膜,其結構為Pd/LDH/10 m Al2O3/PSS。此外,相較於傳統無電電鍍法,此方式製備出之鈀膜層較為平整且均勻,可提升鈀膜管在高溫滲氫時之熱穩定性。在400C時,氫氣滲透率高達78 m3/m2 h bar0.5且選擇率(H2/He)超過400。在14次的升降溫(0 ~ 400C)測試期間內(350小時),鈀膜管之氫氣滲透率與選擇率(H2/He)皆為一定值,證明膜管具備良好之熱穩定性。
    綜合上述研究結果可知,多孔不銹鋼基材經由10 m Al2O3與LDH層兩階段修飾後,可將原有平均孔徑10-20 m減小至1-3 m,此時以無電電鍍法結合旋轉多孔基材方式,可製備出同時具有高氫氣滲透率與良好熱穩定性之緻密鈀膜管。


    Thin dense Pd membranes for hydrogen filtration were deposited on modified porous stainless steel (PSS) tubes by an improved electroless plating technique. Three research parts are included. First, alumina oxide (Al2O¬) particles of two different sizes were subsequently used to modify the non-uniform pore distribution and the surface roughness of the PSS tubes. The principle of the modification was to use large Al2O3 particles (~10 μm) to fill larger pores on the surface, and leave the smaller pores intact. Small Al2O3 particles (~1 μm) were then used to further decrease the surface roughness. Moreover, instead of small Al2O3 particle, a layered double hydroxide (LDH) layer was chosen to reduce the surface roughness of the PSS and to be a middle layer retarding Pd/Fe interdiffusion. Finally, the influence the support rotation rate ranging from 0 to 200 rpm exerted during the Pd deposition process was analysed, and the permeation of hydrogen flux through the membranes was investigated.
    First, the detailed manufacturing steps of the Al2O3 modification were investigated and optimized to achieve a continuous dense Pd membrane with a minimum thickness of 4.4 μm on the modified PSS tubes. The highest hydrogen permeance of the membrane (Pd/1 m Al2O3/10 m Al2O3/PSS) was 75.5 m3/m2 h bar0.5 at 500°C, with a selectivity coefficient (H2/He) of 1124 under a pressure difference of 8 bar. In comparison, the thickness and hydrogen permeance of a dense Pd membrane on unmodified PSS tubes were 31.5 μm and 15.3 m3/m2 h bar0.5, respectively, at 500°C.
    Moreover, the LDH layers successfully instead of small Al2O3 particles to reduce the surface roughness of the PSS and to be a good diffusion barrier layer. The results indicated the membrane (Pd/LDH/10 m Al2O3/PSS) with thickness of ~7.85 m had a hydrogen permeance up to 76.7 m3/m2 h bar0.5 and selectivity coefficient (H2/He) of 3817 at 400°C. Thermal cycling between room temperature and 400C was performed and showed that the membrane exhibited good permeance and selectivity. Long-term evaluation (1500 hours) of the membrane at 400C showed static results of H2 flux and H2/He selectivity over the 1500 hours test period.
    Finally, thin dense palladium (Pd) membranes (~ 5.0 m) were fabricated on rotating PSS supports using electroless plating. The influence the support rotation rate ranging from 0 to 200 rpm exerted during the Pd deposition process was analysed. The rate of Pd deposition increased as the support rotation rate increased during electroless Pd plating. Compared with conventional electroless plating methods, the proposed modified electroless plating using a support rotation technique yielded Pd membranes that had considerably more uniform and smooth surface morphology, which substantially enhanced the membrane stability. The membranes exhibited a hydrogen permeance as high as 78 m3/m2 h bar0.5 at 400°C. Moreover, the membranes were stable during long-term temperature cycling performed between room temperature and 400°C over a period of 350 hours. These results indicated that the electroless plating combined with support rotation process was a simple, effective method for preparing thin dense Pd membranes featuring high hydrogen permeation flux and high thermal durability.

    Chinese Abstract I English Abstract III Acknowledge V Table of contents VI List of Figures IX List of Tables XII Chapter 1 Introduction 1 Chapter 2 Literature review 6 2.1 Pd-H system 6 2.2 Support used for Pd composite membranes 10 2.2.1 Intermetallic diffusion barriers 12 2.2.2 Surface modification of microporous supports 17 2.3 Methods to synthesize composite Pd membranes 23 2.3.1 Supported foils 24 2.3.2 Magnetron sputtering 25 2.3.3 Chemical vapor deposition 27 2.3.4 Electroplating 29 2.3.5 Electroless plating 31 2.3.6 Modified electroless plating 36 Chapter 3 Experimental section 40 3.1 Pretreatment of the porous stainless steel substrates 40 3.2 Substrate modification 43 3.2.1 Alumina substrate modification 43 3.2.2 LDH substrate modification 45 3.3 Electroless plating 47 3.4 Modified electroless plating 48 3.5 Permeance and thermal stability measurements 51 3.6 Membrane characterization 53 Chapter 4 PSS tubes modified with different sizes of Al2O3 particles 54 4.1 Problems and objectives 54 4.2 Results and discussion 56 4.2.1 One-step surface modification 56 4.2.2 Two-step surface modification 66 4.2.3 Stability test 74 4.3 Conclusion 76 Chapter 5 PSS tubes modified with a layered double hydroxide layer 77 5.1 Problems and objectives 77 5.2 Results and discussion 79 5.2.1 Modified PSS substrate 79 5.2.2 Palladium membrane 83 5.2.3 Permeation measurements 88 5.2.4 Stability test 94 5.3 Conclusion 96 Chapter 6 Influence of the rotation rate of PSS tubes on electroless Pd deposition 97 6.1 Problems and objectives 97 6.2 Results and discussion 99 6.2.1 Morphology of the modified PSS substrate 99 6.2.2 The influence of the support rotation rate 102 6.2.3 The influence of the initial hydrazine concentration 107 6.2.4 Permeance performance 109 6.2.5 Stability test 115 6.3 Conclusion 118 Chapter 7 Conclusions 119 Chapter 8 Recommendations 121 References 122 Appendix I Fresh and used membrane 133 Curriculum Vitae 134

    Abys, J. A. (1964). U.S patent 4,424,241.
    Ayturk M.E. “Synthesis, annealing strategies and in situ-characterization of thermally stable composite thin Pd/Ag alloy membranes for H2 purification.” Ph.D. thesis, Worcester Polytechnic Institute, Worcester, 2007.
    Ayturk, M.E. and Ma, Y.M. “Electroless Pd and Ag deposition kinetics of the composite Pd and Pd/Ag membranes synthesized form agitated plating baths.” Journal of Membrane Science. 330 (2009) 233-245.
    Ayturk, M.E.; Engwall, E.E. and Ma, Y.H. “Microstructure analysis of intermetallic diffusion-induced alloy phases in composite Pd/Ag/porous stainless steel membranes.” Industrial Engineering and Chemical Research. 46 (2006a) 4265-4306.
    Ayturk, M.E.; Mardilovich, I.P.; Engwall, E.E. and Ma Y.H. “Synthesis of composite Pd-porous stainless steel (PSS) membranes with a Pd/Ag intermetallic diffusion barrier.” Journal of Membrane Science. 285 (2006) 385 - 394.
    Bosko, M.L.; Ojeda, F.; Lombardo, E.A. and Cornaglia, L.M. “NaA zeolite as an effective diffusion barrier in composite Pd/PSS membranes.” Journal of Membrane Science. 331 (2009) 57-65.
    Bryden, K.J. and Ying, J.Y. “Nanostructured palladium-iron membranes for hydrogen separation and membrane hydrogenation reactions.” Journal of Membrane Science. 203 (2002) 29-42.
    Calles, J.A.; Sanz, R. and Alique, D. “Influence of the type of siliceous material used as intermediate layer in the preparation of hydrogen selective palladium composite membranes over a porous stainless steel support.” International Journal of Hydrogen Energy. 37 (2012) 6030-6042.
    Chen, H.; Chu, C. and Huang, T. “Comprehensive characterization and permeation analysis of thin Pd/Al2O3 composite membranes prepared by suction-assisted electroless deposition.” Separation Science and Technology. 39 (2004) 1461-1483.
    Chen, S.C.; Tu, G.C.; Hung, C.Y.; Huang, C.A. and Rei, M.H. “Preparation of palladium membrane by electroplating on AISI 316L porous stainless steel supports and its use for methanol steam reformer.” Journal of Membrane Science. 314 (2008) 5-14.
    Cheng, Y.S. and Yeung K.L. “Palladium-silver composite membranes by electroless plating.” Journal of Membrane Science. 158 (1999) 127-141.
    Cheng, Y.S. and Yeung, K.L. “Effects of electroless plating chemistry on the synthesis of palladium membranes.” Journal of Membrane Science. 182 (2001) 195-203.
    Chi, Y.H.; Lin, J.J.; Lin, Y.L.; Yang, C.C. and Huang, J.H. “Influence of the rotation rate of porous stainless steel tubes on electroless palladium deposition.” Journal of Membrane Science. 475 (2015) 259-265.
    Chi, Y.H.; Uan, J.Y.; Lin, M.C.; Lin, Y.L. and Huang, J.H. “Preparation of a novel Pd/layer double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling.” International Journal of Hydrogen Energy. 38 (2013) 13734-13741.
    Chi, Y.H.; Yen, P.S.; Jeng, M.S.; Ko, S.T. and Lee, T.C. “Preparation of thin Pd membrane on porous stainless steel tubes modified by a two-step method.” International Journal of Hydrogen Energy. 35 (2010) 6303-6310.
    Edlund, D.J. and McCarthy, J. “The relationship between intermetallic diffusion and flux decline in composite-metal membranes: implications for achieving long membrane lifetime.” Journal of Membrane Science. 107 (1995) 147-153.
    Gade, S.K.; Keeling, M.K.; Davidson, A.P.; Hatlevik, O. and Way, J.D. “Palladium-ruthenium membranes for hydrogen separation fabricated by electroless co-deposition.” International Journal of Hydrogen Energy. 34 (2009) 6484-6491.
    Gallucci, F.; Fernandez, E.; Corengia, P. and Annaland, M.V.S. “Recent advances on membranes and membrane reactors for hydrogen production.” Chemical Engineering Science. 92 (2013) 40-66.
    Gao, H.; Li, Y.; Lin, J.Y.S. and Zhang, B. “Characterization of zirconia modified porous stainless steel supports for Pd membranes.” Journal of Porous Materials. 13 (2006) 419-426.
    Gielens, F.C.; Tong, H.D.; Van Rijn, C.J.M.; Vorstman, M.A.G. and Keurentjes, J.T.F. “High-flux palladium-silver alloy membranes fabricated by microsystem technology.” Desalination. 147 (2002) 417-423.
    Graham, T. “On the adsorption and dialytic separation of gases by colloid septa.” Philosophical Transactions of the Royal Society of London. 156 (1866) 399-439.
    Gryaznov, V.M.; Serebryannikova, O.S.; Serov, Y.M.; Ermilova, M.M.; Karavanov, A.N.; Mischenko, A.P. and Orekhova, N.V. “Preparation and catalysis over palladium composite membranes.” Applied Catalysis A: General. 96 (1993) 15-23.
    Guazzone, F. “Engineering of substrate surface for the synthesis of ultra-thin composite Pd and Pd-Cu membranes for H2 separatio.” Ph.D. thesis, Worcester Polytechnic Institute, Worcester, 2005.
    Guazzone, F. and Ma, Y.H. “Leak growth mechanism in composite Pd membanes prepared by electroless deposition method.” AIChE Journal. 54 (2008) 487-494.
    Hernandez, A.; Calvo, J.I.; Pradanos, P. and Tejerina, F. “Pore size distribution in microporous membranes. a critical analysis of the bubble point extended method. Journal of Membrane Science. 112 (1996) 1-12.
    Hough, W.V.; Little J. L. and Warheit, K.V. (1981). U.S patent 4,255,194.
    Hsieh, Z.L.; Lin, M.C. and Uan, J.Y. “Rapid direct growth of Li-Al layered double hydroxide (LDH) film on glass, silicon wafer and carbon cloth and characterization of LDH film on substrates.” Journal of Materials Chemistry. 21 (2011) 1880-1889.
    Hu, X.; Chen, W. and Huang, Y. “Fabrication of Pd/ceramic membranes for hydrogen separation based on low-cost macroporous ceramics with pencil coating.” International Journal of Hydrogen Energy. 35 (2010) 7803-7808.
    Huang, Y. and Dittmeyer, R. “Preparation of thin palladium membranes on a porous support with rough surface.” Journal of Membrane Science. 302 (2007) 160-170.
    Ilias, S. and Islam, M. “Effect of surfactants in fabrication of palladium thin-film composite membrane by electroless plating.” Proceeding of North American Membrane Society Annual meeting, Orlando, FL, (2007)
    Jayaraman, V.; Lin, Y.S.; Pakala, M. and Lin, R.Y. “Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition.” Journal of Membrane Science. 99 (1995) 89-100.
    Jayraman, V. and Lin, Y.S. “Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes.” Journal of Membrane Science. 104 (1995) 251-262.
    Jemaa, N.; Shu, J.; Kaliaguine, S. and Grandjean, B.P.A. “Thin palladium film formation on shot peening modified porous stainless steel substrates.” Industrial and Engineering Chemistry Research. 35 (1996) 973-977.
    Jun, C.S. and Lee, K.H. “Palladium and palladium alloy composite membranes prepared by metal-organic chemical vapor deposition method (cold-wall).” Journal of Membrane Science. 176 (2000) 121-130.
    Kajiwara, M.; Uemiya, S.; Kojima, T. and Kikuchi, E. “Rhodium- and iridium-dispersed porous alumina membranes and their hydrogen permeation properties.” Catalysis Today. 56 (2000) 83-87.
    Kawagoshi, S. (1977). Japanese patent (Kokai Tokkyo Koho) 77-733.
    Kikuchi, E. “Membrane reactor application hydrogen production.” Catalysis Today. 56 (2000) 97-101.
    Lee, C.B.; Lee, S.W.; Park, J.S.; Ryi, S.K.; Lee, D.W.; Hwang, K.R. and Kim S.H. “Ceramics used as intermetallic diffusion barriers in Pd-based composite membranes sputtered on porous nickel supports.” Journal of Alloys and Compounds. 578 (2013) 425-430.
    Lee, D.W.; Lee, Y.G.; Nam, S.E.; Ihm, S.K. and Lee, K.H. “Study on the variation of morphology and separation behavior of the stainless steel supported membranes at high temperature.” Journal of Membrane Science. 220 (2003) 137-153.
    Lewis, F.A. The Palladium-Hydrogen System. Academic Press, London, New York, 1967.
    Li, A.; Grace, J.R. and Lim, C.J. “Preparation of thin Pd-based composite membrane on planar metallic substrate. Part I: Pre-treatment of porous stainless steel substrate.” Journal of Membrane Science. 298 (2007) 175-81.
    Li, A.; Grace, J.R. and Lim, C.J. “Preparation of thin Pd-based composite membrane on planar metallic substrate. Part II: Preparation of membranes by electroless plating and characterization.” Journal of Membrane Science. 306 (2007) 159-165.
    Li, A.; Liang, W. and Hughes, R. “Characterization and permeation of palladium/stainless steel composite membranes.” Journal of Membrane Science. 149 (1998) 259-268.
    Li, A.; Liang, W. and Hughes, R. “Fabrication of dense palladium composite membranes for hydrogen separation.” Catalysis Today. 56 (2000) 45-51.
    Li, A.; Liang, W. and Hughes, R. “Repair of a Pd/g-Al2O3 composite membrane containing defects, Separation and Purification Technology. 15 (1999) 113-119.
    Li, A.; Xiong, G.; Gu, J. and Zheng, L. “Preparation of Pd/ceramic composite membrane 1. Improvement of the conventional preparation technique.” Journal of Membrane Science. 110 (1996) 257-260.
    Lin, J.K.; and Uan, J.Y. “Formation of Mg, Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3-/CO32- and corresponding protection against corrosion by the coating.” Corrosion Science. 51 (2009) 1181-1188.
    Lin, J.K.; Uan, J.Y.; Wu, C.P. and Huang, H.H. “Direct growth of oriented Mg-Fe layered double hydroxide (LDH) on pure Mg substrates and in vitro corrosion and cell adhesion testing of LDH-coated Mg samples.” Journal of Materials Chemistry. 21 (2011) 5011-5020.
    Lin, M.C.; Chang, F.T. and Uan, J.Y. “Synthesis of Li-Al-carbonate layered double hydroxide in a metal salt-free system. Journal of Materials Chemistry. 20 (2010) 6524-6530.
    Ma, Y.H.; Akis, B.C.; Ayturk, M.E.; Guazzone, F.; Engwall, E.E. and Mardilovich, I.P. “Characterization of intermetallic diffusion barrier and alloy formation for Pd/Cu and Pd/Ag porous stainless steel composite membranes.” Industrial Engineering and Chemistry Research. 43 (2004) 2936-2945.
    Mallory, G.O. and Hajdu, J.B., ed. Electroless Plating: Fundamentals and Applications. American Electroplaters and Surface Finishers Society, Orlando, 1990.
    Mardilovich, I.P.; Engwall, E. and Ma, Y.H. “Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membranes.” Desalination. 144 (2002) 85-89.
    Mardilovich, P.P.; She, Y.; Ma, Y.H. and Rei, M. “Defect free palladium membranes on porous stainless steel support.” AiChE Journal. 44(2) (1998) 310-322.
    Nam, S.E. and Lee, K.H. “A study on the palladium/nickel composite membrane by vacuum electrodeposition.” Journal of Membrane Science. 170 (2000) 91-99.
    Nam, S.E. and Lee, K.H. “Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier.” Journal of Membrane Science. 192 (2001) 177-185.
    Nam, S.E. and Lee, K.H. “Preparation and characterization of palladium alloy composite membranes with a diffusion barrier for hydrogen separation.” Industrial and Engineering Chemistry Research. 44 (2005) 100-105.
    Nam, S.E.; Lee, S.H. and Lee, K.H. “Preparation of a palladium alloy composite membrane supported on a porous stainless steel by vacuum electrodeposition.” Journal of Membrane Science. 153 (1999) 163-173.
    Paglieri, S.N.; Foo, K.Y.; Way, J.D.; Collins, J.P. and Harper-Nixon, D.L. “A new preparation technique for Pd/alumina membrane with enhanced high-temperature stability.” Industrial Engineering and Chemistry Research. 38 (1999) 1925-1936.
    Pearlstein, F. and Weightman R. F. Plating 56 (10) (1969) 1158.
    Peters, T. A.; Stange, M.; Klette, H. and Bredesen, R. “High pressure performance of thin Pd-23%Ag/stainless steel composite membranes in water gas shift mixtures; influence of dilution, mass transfer and surface effects on the hydrogen flux.” Journal of Membrane Science. 316 (2008) 119-127.
    Peters, T.A.; Tucho, W.M.; Ramachandran, A.; Stange, M.; Walmsley, J.C.; Holmestad, R.; Borg, A. and Bredesen, R. “Thin Pd-23%Ag/stainless steel composite membranes: Long-term stability, life-time estimation and post-process characterization.” Journal of Membrane Science. 326 (2009) 572-581.
    Rhoda, R.N. and Madison, A. “Palladium plating by chemical reduction” US Patent 2,915,406, 1959.
    Ryi, S.; Park, J.; Kim, S; Cho, S,; Kim, D. and Um, K. “Characterization of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow on porous nickel support for hydrogen production.” Separation and Purification Technology. 50 (2006) 82-91.
    Ryi, S.K.; Li, A.; Lim, C.J. and Grace, J.R. “Novel non-alloy Ru/Pd composite membrane fabricated by electroless plating for hydrogen separation.” International Journal of Hydrogen Energy. 36 (2011) 9335-9340.
    Samingpraia, S.; Tantayanon, S. and Ma, Y.H. “Chromium oxide intermetallic diffusion barrier for palladium membrane supported on porous stainless steel.” Journal of Membrane Science. 347 (2010) 8-16.
    Sergienko, A. (1968). U. S. patent 3,418,143.
    Shiraski, Y.; Tsuneki, T.; Ota, Y.; Yasuda, I.; Tachibana, S.; Nakajima, H. and Kobayashi, K. “Development of membrane reformer system for highly efficient hydrogen production from natural gas.” International Journal of Hydrogen Energy. 34 (2009) 4482-4487.
    Shu, J.; Adnot, A.; Grandjean, B. P. A. and Kaliaguine, S. “Structurally stable composite Pd-Ag alloy membranes: Introduction of a diffusion barrier.” Thin Solid Films. 286 (1996) 72-79.
    Shu, J.; Grandjean, B.P.A. and Kaliaguine, S. “Asymmetric Pd-Ag/stainless steel catalytic membranes for methane steam reforming.” Catalysis Today. 25 (1995) 327-332.
    Shu, J.; Grandjean, B.P.A. and Kaliaguine, S. “Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating.” Journal of membrane science. 77 (1993) 181-195.
    Shu, J.; Grandjean, B.P.A.; Van Neste, A. and Kaliaguine, S. “Catalytic palladium-based membrane reactors: A review.” The Canadian Journal of Chemical Engineering. 69 (1991) 1036-1060.
    Solomon, B.D. and Banerjee, A. “A global survey of hydrogen energy research, development and policy.” Energy Policy. 34 (2006) 781-792.
    Souleimanova, R.S.; Mukasyan, A.S. and Varma, A. “Effects of osmosis on microstructure of Pd-composite membranes synthesized by electroless plating technique.” Journal of Membrane Science. 166 (2000) 249-257.
    Souleimanova, R.S.; Mukasyan, A.S. and Varma, A. “Pd membrane formed by electroless plating with osmosis: H2 permeation studies.” AIChE Journal. 48 (2002) 262-268.
    Souleimanova, R.S.; Mukasyan, A.S. and Varma, A. “Pd-composite membranes prepared by electroless plating and osmosis: synthesis, characterization and properties.” Separation and Purification Technology. 25 (2001) 79-86.
    Souleimanova, R.S.; Mukasyan, A.S. and Varma, A. “Study of structure formation during electroless plating of thin metal-composite membranes.” Chemical Engineering Science. 54 (1999) 3369-3377.
    Su, C.; Jin, T.; Kuraoka, K.; Matsumura, Y. and Yazawa, T. “Thin palladium film supported on SiO2-modified porous stainless steel for a high-hydrogen-flux membrane.” Industrial Engineering and Chemical Research. 44 (2005) 3053-3058.
    Tanaka, D.A.P.; Tanco, M.A.L.; Nagase, T.; Okazaki, J.; Wahui, Y.; Mizukami, F. and Suzuki, T.M. “Fabrication of hydrogen-permeable composite membranes packed with palladium nanoparticles.” Advanced Materials. 18 (2006) 630-632.
    Tong, J. and Matsumura, Y. “Thin Pd membrane prepared on macroporous stainless steel tube filter by an in-situ mulit-dimensional plating mechanism.” Chemical Communications. (2004) 2460-2461.
    Tong, J.; Kashima, Y.; Shirai, R.; Suda, H. and Matsumura, Y. “Thin defect-free Pd membrane deposited on asymmetric porous stainless steel substrate.” Industrial Engineering and Chemical Research. 44 (2005a) 8025-8032.
    Tong, J.; Matsumura, Y.; Suda, H. and Haraya, K. “Thin and dense Pd/CeO2/MPSS composite membrane for hydrogen separation and steam reforming of methane.” Separation and Purification Technology. 46 (2005b) 1-10.
    Tong, J.; Su, C.; Kuraoka, K.; Suda, H. and Matsumura, Y. “Preparation of thin Pd membrane on CeO2-modified porous metal by a combined method of electroless plating and chemical vapor deposition.” Journal of Membrane Science. 269 (2006) 101-108.
    Tong, J.; Suda, H.; Haraya, K. and Matsumura, Y. “A novel method for the preparation of thin dense Pd membrane on macro porous stainless steel tube filter.” Journal of Membrane Science. 260 (2005c) 10-18.
    Tosti, S. “Supported and laminated Pd-based metallic membranes.” International Journal of Hydrogen Energy. 28 (2003) 1445-1454.
    Tosti, S., Bettinali, L. and Violante, V. “Rolled thin Pd and Pd-Ag membranes for hydrogen separation and production.” International Journal of Hydrogen Energy. 25 (2000) 319-325.
    Tosti, S.; Bettinali, L.; Castelli, S.; Sarto, F.; Scaglione, S. and Violante, V. “Sputtered, electroless, and rolled palladium-ceramic membranes.” Journal of Membrane Science. 196 (2002) 241-249.
    Tullo, A.H. “Praxair plans big.” Chemical and Engineering News. September 16 (2002) 12-14.
    Uemiya, S.; Kato, W.; Uyama, A.; Kajiwara, M.; Kojima, T. and Kikuchi, E. “Separation of hydrogen from gas mixtures using supported platinum-group metal membranes.” Separation and Purification Technology. 22-23 (2001) 309-317.
    Uemiya, S.; Matsuda, T. and Kikuchi, E. “Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics.” Journal of Membrane Science. 56 (1991b) 315-325.
    Uemiya, S.; Sato, N.; Ando, H.; Kude, Y.; Matsuda, T. and Kikuchi, E. “Separation of hydrogen through palladium thin film supported on a porous glass tube.” Journal of Membrane Science. 56 (1991a) 303-313.
    Wang, D.; Tong, J.; Xu, H. and Matsumura, Y. “Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide.” Catalysis Today. 93 - 95 (2004) 689-693.
    Ward, T.L.; and Dao, T. “Model of hydrogen permeation behavior in palladium membranes.” Journal of Membrane Science. 153 (1999) 211-231.
    Wei, L.; Yu, J.; Hua, X. and Huang, Y. “Fabrication of H2-permeable palladium membranes based on pencil-coated porous stainless steel substrate.” International Journal of Hydrogen Energy. 37 (2012) 13007-13012.
    Wicke, E. and Nernst, G. “Phase diagram and thermodynamic behavior of the system Pd/H2 and Pd/D2 at normal temperatures; H/D separations effects.” Berichte der Bunsen-Gesellschaft fur Physikalische Chemie. 68 (1964) 224-235.
    Wu, L.; Xu, N. and Shi, J. “Preparation of a palladium composite membrane by an improved electroless plating technique.” Industrial Engineering and Chemistry Research. 39 (2000) 342-348.
    Xomeritakis, G. and Lin, Y.S. “Fabrication of thin metallic membranes by MOCVD and sputtering.” Journal of Membrane Science. 133 (1997) 217-230.
    Xu, N.; Ryi, S.K.; Li, A.; Grace, J.R.; Lim, J. and Boyd, T. “Improved pre-treatment of porous stainless steel substrate for preparation of Pd-based composite membrane.” The Canadian journal of chemical engineering. 91 (2013) 1695-1701.
    Yan, S.; Maeda, H.; Kusakabe, K. and Morooka, S. “Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation.” Industrial and Engineering Chemistry Research. 33 (1994) 616-622.
    Yepes, D.; Comaglia, L.M.; Irusta, S. and Lombardo, E.A. “Different oxides used as diffusion barriers in composite hydrogen permeable membranes.” Journal of Membrane Science. 274 (2006) 92-101.
    Yeung, K. L.; Sebastian, J.M. and Varma, A. “Novel preparation of Pd/Vycor composite membranes.” Catalysis Today. 25 (1995) 231-236.
    Yeung, K.L.; Christiansen, S.C. and Varma, A. “Palladium composite membranes by electroless plating technique: Relationships between plating kinetics, film microstructure and membrane performance.” Journal of Membrane Science. 159 (1999) 107-122.
    Zhang, X.; Xiong, G. and Yang, W. “A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability.” Journal of Membrane Science. 314 (2008) 226-237.
    Zhao, H.B.; Pflanz, K.; Gu, J.H.; Li, A.W.; Stroh, N.; Brunner, H. and Xiong, G.X. “Preparation of palladium composite membranes by modified electroless plating procedure.” Journal of Membrane Science. 142 (1998) 147-157.
    Zhao, H.B.; Xiong, G.X. and Baron, G. V. “Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering.” Catalysis Today. 56 (2000) 89-96.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE