簡易檢索 / 詳目顯示

研究生: 蔡光磊
Kuang-Lei Tsai
論文名稱: 間白素結合因子核酸結合區與核酸複合體之晶體結構研究
Crystal structure of the DNA-binding domain of Interleukin enhancer binding factor bound to DNA
指導教授: 孫玉珠
Yuh-Ju Sun
蕭傳鐙
Chwan-Deng Hsiao
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 48
中文關鍵詞: 間白素間白素結合因子核酸複合體核酸結合區晶體結構
外文關鍵詞: Interleukin enhancer binding factor, ILF, DNA complex, DNA binding domain, crystal structure
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 間白素結合因子 (Interleukin binding factor, ILF) 是一個轉錄因子可以和人類後天免疫不全病毒I型的長端點重複部份 (HIV-1 LTR) 的多嘌呤的序列以及間白素II型啟動子作結合。間白素結合因子的DNA結合區域 (the DNA-binding domain of ILF, ILF-DBD) 是屬於winged helix 蛋白質家族。這裡我們解出了一個解析度為2.4 Å含有兩個間白素結合因子的DNA結合區域與一條長度為16個鹼基對的DNA和鎂離子所形成複合體結構。在蛋白質的recognition helix (H3) 和 DNA 的major groove有許多直接和介由水為媒介的氫鍵形成。間白素結合因子在winged helix/forkhead 蛋白質家族中是屬於一個新的成員,因為它的C端□-helix的存在取代了的典型的wing 2結構並改變了C端鹼性胺基酸 (RKRRPR) 和DNA辨認的位向。此結構也展示出wing1和DNA的minor groove作用以及在helix 2和helix3之間的胺基酸 (Lys45) 會和DNA作用。比較ILF-DBD/DNA和HNF-3□/DNA這兩個複合體的結構呈現出此兩個蛋白質在DNA的TAAACA 核心區域以及DNA的兩端區域的DNA辨認有一些差異。綜合以上,這些結論提供了一些新的了解對於用高度相似的DNA結合區域在DNA binding的專一性上所做的調節,以及在高度相似的winged helix/forkhead 蛋白質家族中的蛋白質如何有不同的DNA結合特性。


    Interleukin enhancer binding factor (ILF) is a transcription factor that binds to purine-rich regulatory motifs in both the human T-cell leukemia virus long terminal region (HILV-1 LTR) and the interleukin-2 (IL-2) promoter. The DNA-binding domain of ILF (ILF-DBD) belongs to a member of winged helix/forkhead family. Here we report a 2.4 Å crystal structure of two copies of the DBD of ILF bound to 16-bp DNA. Extensive contacts are formed between the recognition helix (H3) and the major groove of DNA through direct and water-mediated hydrogen bonds. ILF-DBD is a new member of the winged helix/forkhead proteins because the presence of a C-terminal α-helix (H4) in place of a typical wing 2 changes the orientation of the C-terminal basic residues (RKRRPR) of H4 to recognize DNA. The structure also shows that wing 1 interacts with minor groove of DNA, and the residues (Lys45) from the H2-H3 loop region make interactions with DNA. Comparison of the ILF-DBD/DNA complex with HNF-3□/DNA complex revealed some differences in DNA recognition at both the “TAAACA” core and the flanking regions of the DNA site. Taken together, these results offer new insights into the modulation of DNA binding specificity within a conserved DNA-binding domain, and provide how highly homologous winged helix/forkhead proteins exhibit differential DNA-binding properties.

    Contents Chapter1 Introduciton 1 Chapter2 Material and Methods 5 2.1 Protein Preparation ------------------------------------------- ----- 5 2.2 Complex formation ------------------------------------------------ 5 2.3 Crystallization of ILF-DBD/DNA complex --------------------- 6 2.4 Native data collection ----------------------------------------------- 7 2.5 MAD data collection ---------------------------------------------- 8 2.6 Structure determination by MAD method at 3.7 Å resolution ---- 8 2.7 Structural refinement of ILF-DBD/DNA complex------------------ 9 Chapter 3 Results 11 3.1 Overall structure of the ILF-DBD/DNA complex ------------- 11 3.2 DNA conformation in the ILF-DBD/DNA complex ------------- 13 3.3 DNA sequence recognition at the major grooves --------------- 14 3.4 DNA sequence recognition at the minor grooves --------------- 16 3.4.a Wing 1 interacts with the minor groove of the DNA ------------- 17 3.4.b DNA recognition by the C-terminal region of the ILF-DBD---- 18 3.5 Contacts at the 5’ flanking region of DNA ------------------------ 20 3.6 Contacts at the 3’ flanking region of DNA ------------------------ 20 3.7 Mg2+ binding site ----------------------------------------------------- 20 3.8 Additional interactions of interest ---------------------------------- 21 Chapter 4 Discussion 23 4.1 Core sequence --------------------------------------------------------- 23 4.2 C-terminal region of the ILF-DBD------------------------------------ 25 4.3 Wing 1 ------------------------------------------------------------------ 25 4.4 The turn between helix 2 and helix 3 --------------------------------- 26 Figures and Figure Legends ----------------------------------- 29 Tables -------------------------------------------------------------- 44 References ------------------------------------------------------- 45

    1. Hromas, R. & Costa, R. (1995). The hepatocyte nuclear factor-3/forkhead transcription regulatory family in development, inflammation, and neoplasia. Crit Rev Oncol Hematol 20, 129-40.
    2. Kaufmann, E. & Knochel, W. (1996). Five years on the wings of fork head. Mech Dev 57, 3-20.
    3. Lai, E., Clark, K. L., Burley, S. K. & Darnell, J. E., Jr. (1993). Hepatocyte nuclear factor 3/fork head or "winged helix" proteins: a family of transcription factors of diverse biologic function. Proc Natl Acad Sci U S A 90, 10421-3.
    4. Martinez-Hackert, E. & Stock, A. M. (1997). Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol 269, 301-12.
    5. Kaestner, K. H., Knochel, W. & Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14, 142-6.
    6. Marsden, I., Jin, C. & Liao, X. (1998). Structural changes in the region directly adjacent to the DNA-binding helix highlight a possible mechanism to explain the observed changes in the sequence-specific binding of winged helix proteins. J Mol Biol 278, 293-9.
    7. Jin, C., Marsden, I., Chen, X. & Liao, X. (1999). Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex. J Mol Biol 289, 683-90.
    8. Liu, P. P., Chen, Y. C., Li, C., Hsieh, Y. H., Chen, S. W., Chen, S. H., Jeng, W. Y. & Chuang, W. J. (2002). Solution structure of the DNA-binding domain of interleukin enhancer binding factor 1 (FOXK1a). Proteins 49, 543-53.
    9. van Dongen, M. J., Cederberg, A., Carlsson, P., Enerback, S. & Wikstrom, M. (2000). Solution structure and dynamics of the DNA-binding domain of the adipocyte-transcription factor FREAC-11. J Mol Biol 296, 351-9.
    10. Weigelt, J., Climent, I., Dahlman-Wright, K. & Wikstrom, M. (2001). Solution structure of the DNA binding domain of the human forkhead transcription factor AFX (FOXO4). Biochemistry 40, 5861-9.
    11. Sheng, W., Rance, M. & Liao, X. (2002). Structure comparison of two conserved HNF-3/fkh proteins HFH-1 and genesis indicates the existence of folding differences in their complexes with a DNA binding sequence. Biochemistry 41, 3286-93.
    12. Gajiwala, K. S. & Burley, S. K. (2000). Winged helix proteins. Curr Opin Struct Biol 10, 110-6.
    13. Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. (1993). Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412-20.
    14. Marsden, I., Chen, Y., Jin, C. & Liao, X. (1997). Evidence that the DNA binding specificity of winged helix proteins is mediated by a structural change in the amino acid sequence adjacent to the principal DNA binding helix. Biochemistry 36, 13248-55.
    15. Jin, C., Marsden, I., Chen, X. & Liao, X. (1998). Sequence specific collective motions in a winged helix DNA binding domain detected by 15N relaxation NMR. Biochemistry 37, 6179-87.
    16. Jin, C. & Liao, X. (1999). Backbone dynamics of a winged helix protein and its DNA complex at different temperatures: changes of internal motions in genesis upon binding to DNA. J Mol Biol 292, 641-51.
    17. Li, C., Lai, C. F., Sigman, D. S. & Gaynor, R. B. (1991). Cloning of a cellular factor, interleukin binding factor, that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeat. Proc Natl Acad Sci U S A 88, 7739-43.
    18. Fujita, T., Shibuya, H., Ohashi, T., Yamanishi, K. & Taniguchi, T. (1986). Regulation of human interleukin-2 gene: functional DNA sequences in the 5' flanking region for the gene expression in activated T lymphocytes. Cell 46, 401-5.
    19. Shaw, J. P., Utz, P. J., Durand, D. B., Toole, J. J., Emmel, E. A. & Crabtree, G. R. (1988). Identification of a putative regulator of early T cell activation genes. Science 241, 202-5.
    20. Crabtree, G. R. (1989). Contingent genetic regulatory events in T lymphocyte activation. Science 243, 355-61.
    21. Nirula, A., Moore, D. J. & Gaynor, R. B. (1997). Constitutive binding of the transcription factor interleukin-2 (IL-2) enhancer binding factor to the IL-2 promoter. J Biol Chem 272, 7736-45.
    22. Li, C., Lusis, A. J., Sparkes, R., Nirula, A. & Gaynor, R. (1992). Characterization and chromosomal mapping of the gene encoding the cellular DNA binding protein ILF. Genomics 13, 665-71.
    23. Buaas, F. W., Lee, K., Edelhoff, S., Disteche, C. & Braun, R. E. (1999). Cloning and characterization of the mouse interleukin enhancer binding factor 3 (Ilf3) homolog in a screen for RNA binding proteins. Mamm Genome 10, 451-6.
    24. Tang, J., Kao, P. N. & Herschman, H. R. (2000). Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem 275, 19866-76.
    25. Otwinowski, Z. a. M., W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.
    26. Terwilliger, T. C. & Berendzen, J. (1999). Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55 (Pt 4), 849-61.
    27. Terwilliger, T. C. (2000). Maximum-likelihood density modification. Acta Crystallogr D Biol Crystallogr 56 (Pt 8), 965-72.
    28. McRee, D. E. (1999). XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. J Struct Biol 125, 156-65.
    29. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54 (Pt 5), 905-21.
    30. Brunger, A. T., Krukowski, A. & Erickson, J. W. (1990). Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A 46 (Pt 7), 585-93.
    31. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760-3.
    32. Lavery, R. & Sklenar, H. (1989). Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn 6, 655-67.
    33. DeLano, W. (2002). The PyMOL User's Manual. DeLano Scientific San Carlos CA, USA.
    34. Koradi, R., Billeter, M. & Wuthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14, 51-5, 29-32.
    35. Yang, Q., Bassel-Duby, R. & Williams, R. S. (1997). Transient expression of a winged-helix protein, MNF-beta, during myogenesis. Mol Cell Biol 17, 5236-43.
    36. Overdier, D. G., Porcella, A. & Costa, R. H. (1994). The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol 14, 2755-66.
    37. Fujii, Y., Shimizu, T., Kusumoto, M., Kyogoku, Y., Taniguchi, T. & Hakoshima, T. (1999). Crystal structure of an IRF-DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences. Embo J 18, 5028-41.
    38. Roux, J., Pictet, R. & Grange, T. (1995). Hepatocyte nuclear factor 3 determines the amplitude of the glucocorticoid response of the rat tyrosine aminotransferase gene. DNA Cell Biol 14, 385-96.
    39. Pierrou, S., Hellqvist, M., Samuelsson, L., Enerback, S. & Carlsson, P. (1994). Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. Embo J 13, 5002-12.
    40. Strauss, J. K. & Maher, L. J., 3rd. (1994). DNA bending by asymmetric phosphate neutralization. Science 266, 1829-34.
    41. Strauss-Soukup, J. K. & Maher, L. J., 3rd. (1998). Electrostatic effects in DNA bending by GCN4 mutants. Biochemistry 37, 1060-6.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE