簡易檢索 / 詳目顯示

研究生: 陳盛煒
Chen, Sheng-Wei
論文名稱: 苯並咪唑-銅錯合物為閘極絕緣層之可撓性有機薄膜電晶體
Flexible organic thin film transistor with benzimidazole-copper complex gate insulators
指導教授: 黃振昌
Hwang, J.
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 133
中文關鍵詞: 苯並咪唑閘極絕緣層有機薄膜電晶體
外文關鍵詞: copper, benzimidazole, gate insulator, orgnaic thin film transistor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A self-coated benzimidazole-copper complex (SCBCC) is utilized as the gate insulating material for pentacene organic thin film transistors (OTFTs) fabricated on a flexible poly(ethylene terephthalate) plastic substrate. The SCBCC is 2-heptyl benzimidazole-copper complex. The fabrication features of SCBCC are self-coating, water-based processing and selectivity of deposition. The pentacene OTFTs exhibits reasonable device characteristics. Threshold voltage, carrier mobility, on/off current ratio, and subthreshold swing are determined to be ~-4.2 V, ~0.08 cm2V-1s-1, ~4x103 and ~4.4 V/decade, respectively. The water-based fabrication process of the SCBCC gate insulator on copper electrodes may provide an opportunity for low cost OTFTs on flexible plastic substrates.
    A double-thin-film structure of self-coated benzimidazole-copper complex (SCBCC) is utilized as the gate insulator for pentacene organic thin film transistors (OTFTs). The SCBCC double-thin-film is composed of 2-heptyl benzimidazole-copper complex and 2-(naphthalen-2-ylmethyl) benzimidazole-copper complex. The fabrication features of the SCBCC double-thin-film are self-coating, water-based processing, selectivity of deposition, and short time. The SCBCC double-thin-film insulator OTFT exhibits better device performance than the SCBCC single-thin-film insulator OTFT made with 2-heptyl benzimidazole-copper complex. The field-effect mobility, on/off current ratio and subthreshold swing of the SCBCC double-thin-film insulator OTFT are determined to be ~0.21 cm2 V-1s-1, ~1.2x104 and~1.3 V/decade, respectively.
    We present a method to reduce gate leakage current by changing the alkyl chain length in the self-coated benzimidazole-copper complex (SCBCC) insulator organic thin film transistors (OTFTs). Three different alkyl chains (amyl, heptyl and nonyl) at the 2 position of benzimidazole were selected for comparison. The gate leakage current is reduced by a factor of 1000 when heptyl is replaced by nonyl in the SCBCC insulator OTFT. The reduction of gate leakage is attributed to the longer d-spacing along surface normal direction, supported by the grazing Incidence X-ray diffraction.


    本篇論文係研發苯並咪唑-銅錯合物作為可撓性有機薄膜電晶體之閘極絕緣層。具有自我成膜特性的2-正庚基苯並咪唑-銅錯合物,成功的成長在鍍銅的可撓性塑膠基板(聚對苯二甲酸乙二酯)上,並作為五苯環有機薄膜電晶體之閘極絕緣層。有機電晶體以苯並咪唑-銅錯合物作為銅閘極絕緣層,其閘極絕緣層之製作具有自我成膜、溶水液製程、選擇性沈積等特色。以銅作為閘電極,並將水溶液製程所製作之苯並咪唑-銅錯合物作為閘極絕緣層的概念,提供一個在軟性塑膠基板上,製作低成本有機薄膜電晶體的方式。苯並咪唑-銅錯合物閘極絕緣層之有機電晶體其元件特性合乎電晶體應有的特徵。電晶體元件的臨界電壓、載子移動率、開關比和次臨界擺幅分別為~-4.2 V, ~0.08 cm2V-1s-1, ~4x103 and ~4.4 V/decade。
    為了提升苯並咪唑-銅錯合物閘極絕緣層有機薄膜電晶體之元件特性,本論文研發出一具雙層薄膜結構之苯並咪唑-銅錯合物閘極絕緣層。雙層苯並咪唑-銅錯合物薄膜結構之是由2-正庚基苯並咪唑-銅和2-萘甲基苯並咪唑-銅錯合物所建構成。有機電晶體以雙層苯並咪唑-銅錯合物薄膜作為銅閘極絕緣層,其閘極絕緣層製作仍保有自我成膜、溶水液製程、選擇性沈積、時間短等特色。與2-正戊基苯並咪唑-銅錯合物閘極絕緣層(單一層薄膜結構)之有機薄膜電晶體比較,具雙層薄膜結構閘極絕緣層之電晶體有較好的元件性能。電晶體元件的載子移動率、開關比和次臨界擺幅分別為~0.21 cm2 V-1s-1, ~1.2x104 and~1.3 V/decade。
    本論文也提供一改善有機薄電膜晶閘極漏電的方法。此方法係以改變苯並咪唑-銅錯合物中烷基鏈的長度來改善漏電。三種具不同烷基鏈長度的2-烷基苯並咪唑合物被選來作比較,它們分別為2-正戊基、2-正庚基和2-正壬基苯並咪唑。與2-正庚基苯並咪唑-銅錯合物閘極絕緣層作比較,有機電晶體以2-正壬基苯並咪唑-銅作為閘極絕緣層,其元件之閘極漏電可以有1000倍的改善。藉由X-ray繞射分析,閘極漏電的改善可歸因於在表面垂直方面有較大的d-spacing。

    Abstract (Chinese) I Abstract (English) III Acknowledgements (Chinese) V Contents VI List of Tables X List of Figures XI Chapter 1 Introduction 1 1-1 Background of organic thin film transistors 1 1-2 Solution process technologies 2 1-2-1 Spin-coating 2 1-2-2 inkjet printing 3 1-3 Organic solderability preservative 5 1-4 Motivation 6 1-5 Organization of the thesis 8 References 13 Chapter 2 Literature review 15 2-1 Organic thin film transistors 15 2-1-1 Device structures 15 2-1-2 Organic semiconductors 16 2-1-3 Source and drain electrodes 19 2-1-4 Gate insulators 20 2-2 Carrier transportation in organic semiconductors 22 2-2-1 Band-like transport 22 2-2-2 Hopping model 24 2-2-3 Multiple trapping and release model 25 2-3 Critical factors at the interface of semiconductor-insulator 27 2-3-1 Surface roughness 27 2-3-2 Surface energy 28 2-3-3 Surface polarity or surface hydrophobicity 29 2-4 Azole comounds for organic solderability preservative 31 2-4-1 Benzotriazole 31 2-4-2 Imidazoles 32 2-4-3 Benzimidazoles 32 2-5 Transistor devices operation and parameter extraction 33 2-5-1 Device operation 33 2-5-2 Parameter extraction 35 References 48 Chapter 3 Experimental 55 3.1 Experimental flow chart 55 3-2 Benzimidazole-copper complex fabricating procedure 56 3-3Thermal evaporation system 56 3.4 Electrical measurement system 57 3.5 Atomic force microscope 57 3.7 Field emission scanning electron microscope 58 3.8 X-ray photoemission spectroscopy 58 3.9 X-ray diffraction 59 3.10 Fourier transform Infrared spectroscopy 60 3.11 Micro-Raman system 61 References 69 Chapter 4 Flexible organic thin film transistors with self-coated benzimidazole-copper complex as gate insulator 70 4-1 Introduction 70 4-2 Experimental 73 4-3 Results and discussion 75 4-4 Conclusions 78 References 83 Chapter 5 XPS and FTIR studies of self-coated benzimidazole-copper complexes 85 5-1 Experimental 86 5-2 Results and discussion 87 5-3 Conclusions 91 References 96 Chapter 6 Double self-coated benzimidazole-copper complex structure as gate insulator for flexible organic thin transistors 97 6-1 Introduction 97 6-2 Experimental 99 6-3 Results and discussion 102 6-4 Conclusions 106 References 113 Chapter 7 Influence of alkyl chain length of benzimidazole-copper complex on gate leakage current in pentacene organic thin film transistors 115 7-1 Introduction 115 7-2 Experimental 117 7-3 Results and discussion 119 7-4 Conclusions 123 References 129 Chapter 8 131 Publications 133 List of Tables Table 5-1 FTIR spectra of 1-H benzimidazole (BIMH), 2-heptyl benzimidazole (2-heptyl BIMH), SCBCC-0 and SCBCC-H used in this chapter. FTIR spectra of BIMH * and Cu2+(BIM-)2 reported by Drolet et al.. Here, BIM- denotes the deprotonated 1-H benzimidazole. 95 Table 6-1 Device characteristics of pentacene OTFTs with a SCBCC-H gate insulator (previously presented in chapter 4) or a SCBCC-H/SCBCC-N gate insulator fabricated on PET substrates. 112 Table 7-1 Device characteristics of top-contact pentacene OTFTs with various gate insulators or the SCBCC-No/SCBCC-N gate insulator fabricated on plastic substrates. 128 List of Figures Fig.1-1 A flexible organic display driven by organic transistors on plastic substrates. 9 Fig.1-2 Four stages of spin-coating process. 10 Fig.1-3 Schematic diagram of one type of piezoelectric drop-on-demand inkject printhead. 11 Fig.1-4 A typical horizontal conveyorized processing of OSP treatment. 12 Fig.2-1 Four configurations of OTFT device structures. 37 Fig.2-2 Chemical structures of some p-type small molecule semiconductors. 38 Fig.2-3 Chemical structures of some p-type polymer semiconductors. 39 Fig.2-4 Chemical structures of some n-type small molecule semiconductors. 40 Fig.2-5 Energy levels of pentacene, Au and Ca. 41 Fig.2-6 (a) Chemical structures of some insulating polymers . (b) Schematic diagram of a self-assembled monolayer (SAM) comprised of three components. 42 Fig.2-7 Schematic diagrams of (a) the movement of charge carriers mainly limited by lattice vibrations (phonons) and (b) the phonon-assisted process of hopping transport mechanism. 43 Fig.2-8 Schematic diagrams of carrier trapped in localized states and released by thermal activated process in MTR model. 44 Fig.2-9 The molecular structure of 1-H benzimidazole (BTA) (b) BTAs chemically reacts with Cu ions and forms polymeric BTA-Cu complex. 45 Fig.2-10 (a) The chemical structure of 2-substiuted imidazole and 2-substiuted imdazole-Cu complex. (b) A polymeric 2-substiuted benzimdazole-Cu complex film on copper surface. 46 Fig.2-11 Schematic diagrams of a top contact OTFT device with p-type channel operates in accumulation mode. 47 Fig.3-1 Schematic diagram of fabricating procedure of self–coated benzimidazole-copper complex (SCBCC). 62 Fig.3-2 (a) Thermal evaporation system. (b) Crucible with tungsten coil. (c) Tungsten boat. 63 Fig.3-3 A sketch of the AFM instrument. 64 Fig.3-4 (a) The photoelectron generation mechanism of an atom. (b) A XPS instrument comprised of hemispherical electron energy analyzer, computer and X-ray source. 65 Fig.3-5 Visualization of the Bragg equation. 66 Fig.3-6 Different types of bending and stretching vibrations. 67 Fig.3-7 Schematic of a micro-Raman system. 68 Fig.4-1 The chemical structure of 2-heptyl benzimidazole. 79 Fig.4-2 (a) Sketch of the top contact structure of a SCBCC-insulator OTFT device. (b) Photograph of SCBCC-insulator OTFT devices on the flexible PET substrate. 80 Fig.4-3 (a) The output characteristics, (b) the transfer characteristic with gate leakage current, and (c) the square root of drain current (IDS, Sat.)1/2 versus gate-source voltage (VGS) curve of a SCBCC-insulator OTFT device fabricating on the copper electrode. 81 Fig.4-4 AFM images showing the surface roughness of SCBCC film. 82 Fig.5-1 (a) XPS spectra of C(1s), N(1s), Cu(2p) and O(1s) of a SCBCC-H film. (b) XPS Cu 2p spectra from a SCBCC-H film and metallic Cu. The Cu LMM spectra from the SCBCC-H film and metallic Cu are shown in the inset. The Cu ions in the SCBCC film are determined to be Cu+. 92 Fig.5-2 FTIR spectra of (a) 1-H benzimidazole and (b) SCBCC-0. (c) The schematic structure of Cu+BIM- reported by Xu et al. Here, BIM- denotes the deprotonated 1-H benzimidazole. The molecular structure of 1-H benzimidazole is shown in inset of Fig. 5-2 (a). 93 Fig.5-3 FTIR spectra of (a) 2-heptyl benzimidazole and (b) SCBCC-H. The molecular structure of 2-heptyl benzimidazole is shown in inset of Fig. 5-3 (a). 94 Fig.6-1 (a) Chemical structures of 2-heptyl benzimidazole and 2-(naphthalen-2-ylmethyl) benzimidazole. (b) Sketch of the top contact OTFT structure with a SCBCC-H/SCBCC-N double-film gate insulator. SCBCC-N and SCBCC-H denote 2-(naphthalen-2-ylmethyl) benzimidazole-copper complex and 2-heptyl benzimidazole-copper complex, respectively. 108 Fig.6-2 (a) Raman spectra taken from the SCBCC-H/SCBCC-N double-thin-film structure and the SCBCC-H film and (b) Raman spectra taken from the scratched SCBCC-H/SCBCC-N structure and the SCBCC-N film. 109 Fig.6-3 (a) Capacitance-voltage and (b) Current-voltage characteristics of the MIM structure made with the SCBCC-H/SCBCC-N bi-layer. (c) Output and (d) Transfer characteristics of the OTFT device with a SCBCC-H/SCBCC-N gate insulator fabricated on the flexible PET substrate. The capacitance-frequency characteristics of the MIM structure are shown in the inset of Fig.6-3(a). 110 Fig.6-4 AFM images showing the surface roughness of (a) SCBCC-H film (b) SCBCC-H/ SCBCC-N film and (c) SCBCC-N film. 111 Fig.7-1 (a) Chemical structures of 2-alkyl benzimidazole [alkyl= amyl, heptyl and nonyl] and 2-(naphthalen-2-ylmethyl) benzimidazole. (b) Sketch of the top contact OTFT structure with the SCBCC-X/SCBCC-N [X=A, H and No] double-film gate insulator. SCBCC-X [X=A, H and No] and SCBCC-N denote 2-alkyl benzimidazole-copper complex [alkyl= amyl, heptyl and nonyl] and 2-(naphthalen-2-ylmethyl) benzimidazole-copper complex, respectively. 124 Fig.7-2 Transfer characteristics and gate leakage current of the OTFT devices with SCBCC-X/SCBCC-N [(a) X=H and (b) X=No] double-layer gate insulators. (c) Capacitance-frequency and (d) capacitance-voltage characteristics of the MIM structures made with SCBCC-X/SCBCC-N [X=H and No] double-layer insulators. 125 Fig.7-3 (a) Cross-section SEM images of SCBCC-N and SCBCC-X/SCBCC-N [X=A, H and No]. (b) Current-voltage characteristics of the MIM structures made with SCBCC-X/SCBCC-N [X=A, H and No] double-layer insulators. 126 Fig.7-4 Grazing incidence X-ray diffraction (GI-XRD) profiles of SCBCC-X [X=A, H and No] films. 127

    Ch1
    [1] F. Ebisawa, T. Koezuka, and S. Nara, journal of applied physics 54,3255(1983)
    [2] A. Tsumura, H. Koezuka, and T. Ando, applied physics letters, 49,1210 (1986)
    [3] C. Clarisse, M.T. Riou, M. Gauneau, and M. Le Contellec, Electronics letters, 24, 674 (1988 )
    [4] http://www.sony.net/SonyInfo/technology/technology/theme/organic
    transistor_01.html
    [5] http://www.xmission.com/~ralcon/tutorial/tutorial.html
    [6] E. Tekin, P. J. Smith, and U. S. Schubert, Soft Matter, 4, 703(2008)
    [7] M. Singh, H. M. Haverinen, P. Dhagat, and
    G. E. Jabbour, Adv. Mater. 22, 673 (2010)
    [8] D. Gamota,P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics (Kluwer Academic Pub, USA, 2004) p190
    [9] J. Bath, Lead-Free Soldering (Springer Verlag, New York, 2007) p230
    [10] http://www.electrochemicals.com/carhunta.html
    [11] J.H. Lau, C.P. Wong, N. C. Lee, S.W. R. Lee, Electronics Manufacturing: with Lead-free, Halogen-free, and Conductive-adhesive Materials (McGraw-Hill, New Youk, 2002 )p14.11
    [12] C. F. Combs, Printed circuits handbook (McGraw-Hill, USA, 2007) p32.8
    Ch2
    [1] D. Gamota,P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics (Kluwer Academic Pub, USA, 2004) p350
    [2] C.A. Di, Y. Liu, G. Yu, and D. Zhu, Acc. Chem. Res. 42,1573 (2009)
    [3] Y. Shirota, and H. Kageyama, Chem. Rev. 107, 953□□2007)
    [4] A. Facchetti, Materialstoday,10,3(2007)
    [5] D. J. Carswell, Nature 173, 736 (1954)
    [6] H. Klauk, D. J. Gundlach, J. A. Nichols, T. N. Jackson, IEEE Trans. Electron Dev. 46, 1258 (1999)
    [7] Z. Rang, A. Haraldsson, D. M. Kim, P. P. Ruden, M. I. Nathan, R. J. Chesterfield, and C. D. Frisbie, Appl. Phys. Lett. 79, 2731(2001)
    [8] G. Horowitz, D. Fichou, X. Peng and F. Garnier, Synth. Met. 41, 1127 (1991)
    [9] O. D. Jurchescu, M. Popinciuc, B. J. van Wees and T.T. M. Palstra
    Adv. Mater. 19, 688 (2007)
    [12] S. Lee, B. Koo, E. Lee, H. Park and H. Kim, Appl. Phys. Lett. 88, 162109 (2006)
    [11] M. M. Payne, S. R. Parkin, J. E. Anthony, C. Kuo and T. N. Jackson
    J. Am. Chem. Soc. 127, 4969 (2005)
    [12] T. Mori Condens. Matter 20,184010 (2008)
    [13] McCullough, R. D., Adv. Mater. 10, 93 (1998)
    [14] A. Assadi, C. Svensson, M. Willander, and O. Inganäs, Appl. Phys. Lett. 53, 195(1988)
    [15] A. Babel, S. A. Jenekhe, Synth. Met. 148, 169 (2005)
    [16] A. Zen, M. Saphiannikova,; D. Neher,; U. Asawapirom,; U. Scherf,
    Chem. Mater.17, 781 (2005)
    [17] A.C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay and A. Salleo, Chem. Rev, 110, 3 ( 2010)
    [18] D. Gamota,P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics (Kluwer Academic Pub, USA, 2004) p373
    [19] M. Ahles; R. Schmechel, H. V. Seggern, Appl. Phys. Lett.
    85, 4499 (2004)
    [20] T.Yasuda, T. Tsutsui, Chem. Phys. Lett., 402, 395 (2005)
    [21] Yasuda T, Goto T, Fujita K and Tsutsui T Appl. Phys.Lett. 85, 2098 (2004)
    [22]H. W. Zan and C. W. Chou, Jpn. J. Appl. Phys. 48, 031501 (2009)
    [23] S.Y. Kwak, C. G. Choi, and B. S. Bae, Electrochem. Solid-State Lett. 12, G37 (2009)
    [24] M. Gad-el-Hak, The MEMS Handbook (CRC Press, FL, 2002) p16-55
    [25] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002)
    [26] Y. H. Lo, Emerging Optoelectronic Technologies and Applications (world scientific,1997) p251
    [27] B.G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, (Springer, Berlin 2003) p70
    [28] B.G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, (Springer, Berlin 2003) p61
    [29] C. I. Ho, Investigations of Temperature and Optical Illumination on Organic Thin Film Transistors for AMLCD Applications, (NSYSU, M.S. thesis, 2005) p6
    [30] O. Ostroverkhova, D. G. Cooke, S. Shcherbyna, R. F. Egerton, F. A. Hegmann, R. R. Tykwinski, and J. E. Anthony,. Phys. Rev. B 71, 35204 (2005).
    [31] Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Phys.Rev.Lett. 95, 226601 (2005).
    [32] D. Braga, and G. Horowitz, Adv. Mater. 21,1473 (2009).
    [33] P. H. Wöbkenberg, Thin‐Film Transistors for Large Area Opto/Electronics ( Imperial College, Ph.D. thesis, 2009) p35
    [34] Z. An, Perylene-based Materials: Potential Components in Organic Electronics and Optoelectronics (Georgia Institute of Technology, Ph.D. thesis, 2005) p6
    [35] W Warta, R.Stehle, N.Karl, Appl. Phys. A 36, 163 (1985).
    [36] F. So, Organic Electronics: Materials, Processing, Devices and Applications (CRC Press, FL, 2002) p66
    [37] A. Miller, and E. Abrahams, Phys. Rev. 120, 745 (1960)
    [38] A. K. Tripathi, Structural and Electronic Characterization of Single Crystals of Ambipolar Organic Semiconductors: Diindenoperylene and Diphenylanthracene (Indien, Ph.D.thesis, 2008) p35
    [39] C. Karnutsch, Low threshold organic thin-film laser devices (Cuvillier Verlag Gottingen, 2007) p13.
    [40] P. M. Borsenberger, W.T. Gruenbaum and E. H. Magin, Jpn. J. Appl. Phys. 35, 2698 (1996)
    [41] G. Dennler, N. S. Sariciftci, and C. J. Brabec, Conjugated polymer-based organic solar cells in Semiconducting Polymers, 2nd ed., edited by G. Hadziioannou and G. Malliaras (Wiley-VCH Verlag GmbH, Weinheim, 2006). p498
    [42] P. G. Le Comber and W. E. Spear, Phys. Rev. Lett. 25, 509 (1970)
    [43] G. Meller, T. Grasser, Advances in Polymer Science 223 (Springer Verlag, 2009) p123
    [44] G. Hadziioannou and G. G. Malliaras, Semiconducting Polymers, Chemistry, Physics and Engineering 2 (Wiley-VCH, Weinheim, 2007) p599
    [45] R.Ruiz, A. Papadimitratos, A. C. Mayer and G. G. Malliaras, Adv. Mater. 17 ,1795 (2005)
    [46] X. Sun, C. A. Di and Y. Liu, J. Mater. Chem. 20, 2599 (2010)
    [47] J. Veres, S. Ogier, and G. Lloyd, Chem. Mater.16, 4543 (2004)
    [48] Y. Jung, R. J. Kline, D. A. Fischer, E. K. Lin, M. Heeney, I. McCulloch, and D. M. DeLongchamp, Adv. Funct. Mater. 18, 7429 (2008)
    [49] L. L. Chua, P. K. H. Ho, H. Sirrenghaus and R. H. Friend, Adv. Mater.16, 1609 (2004)
    [50] D. Knipp, R. A. Street, A. VÖ lkel, Appl. Phys. Lett. 82, 3907 (2003).
    [51] H. W. Zan and C. W. Chou, Jpn. J. Appl. Phys. 48, 031501 (2009)
    [52] S.Y. Kwak, C. G. Choi, and B. S. Bae, Electrochem. Solid-State Lett. 12, G37 (2009)
    [53] D. H. Kim, D. W. Kim, K. S. Kim, H. J. Kim, J. S. Moon, M. P. Hong, B. S. Kim, J. H. Shin Y. M. Kim, K. K.Song and S. S. Shin Jpn. J. Appl. Phys. 47,5672 (2008)
    [54]S. Y. Yang, K. Shin and C. E. Park, Adv. Funct. Mater.15,1806 (2005)
    [55] T. Umeda, D. Kumaki and S. Tokito, J. Appl. Phys. 105, 024516 (2009)
    [56] H. W. Zan, K. H. Yen , P. K. Liu , K. H. Kc, C. H. Chen, J. Hwang, Organic Electronic 8, 450 (2007)
    [57] S. Jeong, D. Kim, B. K. Park, S. Lee, and J. Moon, Nanotechnology, 18, 025204 (2007)
    [58] J. Veres, S. Ogier, and G. Lloyd Chem. Mater. 16, 4543 (2004)
    [59] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa and A. Iwasa, Nat. Mater.3, 317 (2004)
    [60] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid and G. Schitter, J. Appl. Phys. 96 , 6431 (2004)
    [61] S. H. Kim, H. Yang, S. Y. Yang, K. Hong, D. Choi, C. Yang, D. S. Chung and C. E. Park, Org. Electron. 9, 673 (2008)
    [62] J.H. Lau, C.P. Wong, N. C. Lee, S.W. R. Lee, Electronics Manufacturing: with Lead-free, Halogen-free, and Conductive-adhesive Materials (McGraw-Hill, New Youk, 2002 )p14.1-14.10
    [63] C. Tornkvist, D. Thierry, J. Bergman, B. Liedberg, and C.Leygraf, J. Electrochem. Soc. 136, 58 (1989)
    [64] H. J. Kim, K. W. Paik, J. Electron. Mater. 37,1003 (2008).
    [65] M. L. Lewis, L. Ledung, and K. T. Carron, langmuir 9,186 (1993)
    [66] A. Facchetti, Materialstoday10, 3(2007)
    [67] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J. L Brédas. Chem. Rev. 107, 926 □ 2007)
    [68] G. Horowitz, Adv. Mater.10, 365 (1998)
    [69] D. Braga, and G. Horowitz , Adv. Mater. 21,1473 (2009)
    [70] M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter 20, 184011 (2008)
    [71] D. R.Gamota, P. Brazis, K. Paul, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics, ( Kluwer Academic Pub, 2004) p9
    Ch3
    [1] H. Fujita, Micromachines as tools for nanotechnology (Springer Verlag, New York, 2003) p124
    [2] J. C. Vickerman, Surface Analysis: the principal techniques (John & Sons, U.K., 1997) p 74.
    [3] M. Birkholz, P. F. Fewster, C. Genzel, Thin film analysis by X-ray scattering (John Wiley & Sons Inc, Germany, 2006) p10
    [4] B. Stuart, Infrared spectroscopy: Fundamental and applications (John Wiley & Sons Inc, England , 2004) p8
    [5] Yen K S, Study of hexgonal hillocks on AlxGa1-x thin film (NTCU, MA thesis, 2004) p31
    Ch4
    [1]. A. Sazonov, D. Striakhilev, C. H. Lee, and A. Nathan, Proc. IEEE 93, 1420 (2005).
    [2] H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
    [3]. S. K. Park, D. A. Mouery, J. E. Anthony, and T. N. Jackson, Appl. Phys. Lett. 91, 063514 (2007).
    [4]. D. Kim, S. Jeong, S. Lee, B. K. Park, and J. Moon, Thin Solid Films 515, 7692 (2007).
    [5]. H. Y. Choi, S. H. Kim, and J. Jang, Adv. Mater. 16, 732 (2004).
    [6]. B. Stadlober, M. Zirkl, M. Beutl, G. Leising, S. B. Gogonea, and S. Bauer, Appl. Phys. Lett. 86, 242902 (2005).
    [7]. Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, Appl. Phys. Lett. 88, 072101 (2006).
    [8]. Th. B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, and N. S. Sariciftci, Adv. Mater. 17, 2315 (2005).
    [9]. P. Fontaine, D. Goguenheim, D. Deresmes, D. Vuillaume, M. Garet, and F. Rondelez, Appl. Phys. Lett. 62, 2256 (1993).
    [10]. J. Collet, O. Tharaud, A. Chapoton, and D. Vuillaume, Appl. Phys. Lett. 76, 1941 (2000).
    [11]. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).
    [12].Y. D. Park, D. H. Kim, Y. Jang, M. Hwang, J. A. Lim, and K. Cho, Appl. Phys. Lett. 87, 243509 (2005).
    [13]. P. H. Wöbkenberg, J. Ball, F. B. Kooistra, J. C. Hummelen,
    D. M. de Leeuw, D. D. C. Bradley, and T. D. Anthopoulos, Appl. Phys. Lett. 93, 013303 (2008).
    [14]. H. Ma, O. Acton, G. Ting, J. W. Ka, H. L. Yip, N. Tucker, R. Schofield, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 113303 (2008).
    [15]. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature (London) 445, 745 (2007).
    [16] .H. J. Kim, K. W. Paik, J. Electron. Mater. 37, 1003 (2008).
    [17]. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
    [18]. Y. G. Seol, J. G. Lee, and N. E. Lee, Org. Electron. 8, 513 (2007).
    Ch5
    [1] C. F.Combs, Jr., Printed circuits handbook (McGraw-Hill, USA, 2007) p32.8
    [2] J. Bath, Lead-Free Soldering (Springer Verlag, New York, 2007) p228
    [3] J.H. Lau, C.P. Wong, N. C. Lee, S.W. R. Lee, Electronics Manufacturing: with Lead-free, Halogen-free, and Conductive-adhesive Materials (McGraw-Hill, New Youk, 2002 )p14.1-14.10
    [4] H. J. Kim, K. W. Paik, J. Electron. Mater. 37, 1003 (2008).
    [5] M. L. Lewis, L. Ledung, and K. T. Carron, Langmuir, 9, 186 (1993).
    [6] D.P. Drolet, D. M. Manuta, A. J. Lees, Inorg. Chim. Acta.146,173 (1988)
    [7] G. Xue, J. Zhang, G. Shi, and Y. Wu, J. Chem. Soc. Perkin Trans. II, 33 (1989)
    [8] G. Xue, J. Ding, P.W. Wu and G. Ji, J. Electroanal. Chem. 270,163 (1989)
    [9] D. M. Spori, V. N. Venkataraman, S. G. P. Tosatti, F. Durmaz, N. D.Spencer, and S. Zürcher Langmuir, 23, 8053 (2007)
    [10] Y. D. Park, D. H. Kim, Y. Jang, J. H. Cho, M. Hwang, H. S. Lee, J. A. Lim, and K. Cho, Org. Electron.7, 514 (2006)
    Ch6
    [1] H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
    [2] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science 290, 2123 (2000) .
    [3] H. Yan, Z. Chen, Y. Zheng, C. R. Newman, J. R. Quinn, F. Dolz, M. Kastler, and A. Facchetti, Nature (London) 457, 679 (2009).
    [4] A. Facchetti, M. H. Yoon, and T. J. Marks, Adv. Mater. (Weinheim, Ger.) 17, 1705 (2005).
    [5] J. Veres, S. Ogier, G. Lloyd, and D. de Leeuw, Chem. Mater. 16, 4543 (2004).
    [6] P. Fontaine, D. Goguenheim, D. Deresmes, D. Vuillaume, M. Garet, and F. Rondelez, Appl. Phys. Lett. 62, 2256 (1993).
    [7] J. Collet, O. Tharaud, A. Chapoton, and D. Vuillaume, Appl. Phys. Lett. 76, 1941 (2000) .
    [8] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).
    [9] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature (London) 445, 745 (2007).
    [10] G. Xue, S. Jiang, X. Huang, G. Shi, J. Chem. Soc. Dalton Trans. 1487 (1988).
    [11] G. Xue, J. F. Ding, P. Y. Wu, and G. D. Ji, J. Electroanal Chem. 270, 163 (1989).
    [12] H. J. Kim, K. W. Paik, J. Electron. Mater. 37, 1003 (2008).
    [13] R. L. Opila, H. W. Krautter, B. R. Zegarski, and L. H. Dubois, J. Electrochem. Soc., 142, 4074 (1995)
    [14] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
    [15] D. Knipp, R. A. Street, A. VÖ lkel, Appl. Phys. Lett. 82, 3907 (2003).
    [16] X. Sun, C. A. Di and Y. Liu, J. Mater. Chem. 20, 2599 (2010)
    Ch7
    [1] A.C.Arias, J.D. MacKenzie,I. McCulloch,J. Rivany, and A. Salleo, Chem. Rev. 110, 3 (2010)
    [2] J. Li, F. Qin, C. M. Li, Q. Bao, M. B. Chan-Park, W. Zhang, J. Qin, B. S. Ong, Chem. Mater. 20, 2057 (2008)
    [3] S. J. Choi, S. Lee, K. K. Han, K .Lee, D. Kim, J. Kim and H.H. Lee, Appl. Phys. Lett. 90, 063507 (2007)
    [4] M. H. Yoon, A. Facchetti, and T. J. Marks, Proc. Natl. Acad. Sci. U.S.A. 102, 4678 (2005)
    [5] H. Kim, R. C. Y Auyeung, S. H. Lee, A. L. Huston1 and A. Piqu´e, J. Phys. D: Appl. Phys. 43,085101 (2010)
    [6] S. W. Chen, C. H. Wang, and J. Hwang, Appl. Phys. Lett. 94, 243303 (2009).
    [7] S. W. Chen, C. Y. Hsieh, C. H. Wang, and J. Hwang, Electrochem. Solid State Lett. 13, H230 (2010)
    [8] U. Zschieschang, M. Halik, and H. Klauk, Langmuir 24, 1665 (2008)
    [9] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981)
    [10] S. Pyo, H. Son, K. Y. Choi and M. H. Yi, Appl. Phys. Lett. 86, 133508 (2005).
    [11] W. J. Kim, W. H. Koo, S. J. Jo, C. S. Kim,.H. K. Baik,D. K. Hwang, K. Lee, J. H. Kim and S. Im., Electrochem. Solid State Lett. 9, G251 (2006)
    [12] C. Yang, J. Yoon, S. H. Kim, K. Hong, D. S. Chung, K. Heo, C. E. Park and M. Ree, Appl. Phys. Lett. 92, 243305 (2008)
    [13] Y. G. Seol, H. Y. Noh, S. S. Lee, J. H. Ahn and N. E. Lee, Appl. Phys. Lett. 93, 13305 (2008)
    [14] T. Ahn, J. W. Kim, Y. Choi and M. H. Yi, Org. Electron.9, 711 (2008)
    [15] M. F. Chang, P. T. Lee, S. P. McAlister and A. Chin, IEEE Electron Dev. Lett. 30,134 (2009)
    [16] K. H. Cho, T. G. Seong, J.Y. Choi, J. S. Kim, J. H. Kwon, S. I. Shin, M. H. Chung, B. K. Ju and S. Nahm, Langmuir 25,12349 (2009),
    [17] K. H. Lee, K. Lee, M. S. Oh, J. M. Choi, S. Im, S. Jang and E Kim, Org. Electron.10, 194 (2009)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE