研究生: |
陳盛煒 Chen, Sheng-Wei |
---|---|
論文名稱: |
苯並咪唑-銅錯合物為閘極絕緣層之可撓性有機薄膜電晶體 Flexible organic thin film transistor with benzimidazole-copper complex gate insulators |
指導教授: |
黃振昌
Hwang, J. |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 133 |
中文關鍵詞: | 銅 、苯並咪唑 、閘極絕緣層 、有機薄膜電晶體 |
外文關鍵詞: | copper, benzimidazole, gate insulator, orgnaic thin film transistor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A self-coated benzimidazole-copper complex (SCBCC) is utilized as the gate insulating material for pentacene organic thin film transistors (OTFTs) fabricated on a flexible poly(ethylene terephthalate) plastic substrate. The SCBCC is 2-heptyl benzimidazole-copper complex. The fabrication features of SCBCC are self-coating, water-based processing and selectivity of deposition. The pentacene OTFTs exhibits reasonable device characteristics. Threshold voltage, carrier mobility, on/off current ratio, and subthreshold swing are determined to be ~-4.2 V, ~0.08 cm2V-1s-1, ~4x103 and ~4.4 V/decade, respectively. The water-based fabrication process of the SCBCC gate insulator on copper electrodes may provide an opportunity for low cost OTFTs on flexible plastic substrates.
A double-thin-film structure of self-coated benzimidazole-copper complex (SCBCC) is utilized as the gate insulator for pentacene organic thin film transistors (OTFTs). The SCBCC double-thin-film is composed of 2-heptyl benzimidazole-copper complex and 2-(naphthalen-2-ylmethyl) benzimidazole-copper complex. The fabrication features of the SCBCC double-thin-film are self-coating, water-based processing, selectivity of deposition, and short time. The SCBCC double-thin-film insulator OTFT exhibits better device performance than the SCBCC single-thin-film insulator OTFT made with 2-heptyl benzimidazole-copper complex. The field-effect mobility, on/off current ratio and subthreshold swing of the SCBCC double-thin-film insulator OTFT are determined to be ~0.21 cm2 V-1s-1, ~1.2x104 and~1.3 V/decade, respectively.
We present a method to reduce gate leakage current by changing the alkyl chain length in the self-coated benzimidazole-copper complex (SCBCC) insulator organic thin film transistors (OTFTs). Three different alkyl chains (amyl, heptyl and nonyl) at the 2 position of benzimidazole were selected for comparison. The gate leakage current is reduced by a factor of 1000 when heptyl is replaced by nonyl in the SCBCC insulator OTFT. The reduction of gate leakage is attributed to the longer d-spacing along surface normal direction, supported by the grazing Incidence X-ray diffraction.
本篇論文係研發苯並咪唑-銅錯合物作為可撓性有機薄膜電晶體之閘極絕緣層。具有自我成膜特性的2-正庚基苯並咪唑-銅錯合物,成功的成長在鍍銅的可撓性塑膠基板(聚對苯二甲酸乙二酯)上,並作為五苯環有機薄膜電晶體之閘極絕緣層。有機電晶體以苯並咪唑-銅錯合物作為銅閘極絕緣層,其閘極絕緣層之製作具有自我成膜、溶水液製程、選擇性沈積等特色。以銅作為閘電極,並將水溶液製程所製作之苯並咪唑-銅錯合物作為閘極絕緣層的概念,提供一個在軟性塑膠基板上,製作低成本有機薄膜電晶體的方式。苯並咪唑-銅錯合物閘極絕緣層之有機電晶體其元件特性合乎電晶體應有的特徵。電晶體元件的臨界電壓、載子移動率、開關比和次臨界擺幅分別為~-4.2 V, ~0.08 cm2V-1s-1, ~4x103 and ~4.4 V/decade。
為了提升苯並咪唑-銅錯合物閘極絕緣層有機薄膜電晶體之元件特性,本論文研發出一具雙層薄膜結構之苯並咪唑-銅錯合物閘極絕緣層。雙層苯並咪唑-銅錯合物薄膜結構之是由2-正庚基苯並咪唑-銅和2-萘甲基苯並咪唑-銅錯合物所建構成。有機電晶體以雙層苯並咪唑-銅錯合物薄膜作為銅閘極絕緣層,其閘極絕緣層製作仍保有自我成膜、溶水液製程、選擇性沈積、時間短等特色。與2-正戊基苯並咪唑-銅錯合物閘極絕緣層(單一層薄膜結構)之有機薄膜電晶體比較,具雙層薄膜結構閘極絕緣層之電晶體有較好的元件性能。電晶體元件的載子移動率、開關比和次臨界擺幅分別為~0.21 cm2 V-1s-1, ~1.2x104 and~1.3 V/decade。
本論文也提供一改善有機薄電膜晶閘極漏電的方法。此方法係以改變苯並咪唑-銅錯合物中烷基鏈的長度來改善漏電。三種具不同烷基鏈長度的2-烷基苯並咪唑合物被選來作比較,它們分別為2-正戊基、2-正庚基和2-正壬基苯並咪唑。與2-正庚基苯並咪唑-銅錯合物閘極絕緣層作比較,有機電晶體以2-正壬基苯並咪唑-銅作為閘極絕緣層,其元件之閘極漏電可以有1000倍的改善。藉由X-ray繞射分析,閘極漏電的改善可歸因於在表面垂直方面有較大的d-spacing。
Ch1
[1] F. Ebisawa, T. Koezuka, and S. Nara, journal of applied physics 54,3255(1983)
[2] A. Tsumura, H. Koezuka, and T. Ando, applied physics letters, 49,1210 (1986)
[3] C. Clarisse, M.T. Riou, M. Gauneau, and M. Le Contellec, Electronics letters, 24, 674 (1988 )
[4] http://www.sony.net/SonyInfo/technology/technology/theme/organic
transistor_01.html
[5] http://www.xmission.com/~ralcon/tutorial/tutorial.html
[6] E. Tekin, P. J. Smith, and U. S. Schubert, Soft Matter, 4, 703(2008)
[7] M. Singh, H. M. Haverinen, P. Dhagat, and
G. E. Jabbour, Adv. Mater. 22, 673 (2010)
[8] D. Gamota,P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics (Kluwer Academic Pub, USA, 2004) p190
[9] J. Bath, Lead-Free Soldering (Springer Verlag, New York, 2007) p230
[10] http://www.electrochemicals.com/carhunta.html
[11] J.H. Lau, C.P. Wong, N. C. Lee, S.W. R. Lee, Electronics Manufacturing: with Lead-free, Halogen-free, and Conductive-adhesive Materials (McGraw-Hill, New Youk, 2002 )p14.11
[12] C. F. Combs, Printed circuits handbook (McGraw-Hill, USA, 2007) p32.8
Ch2
[1] D. Gamota,P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics (Kluwer Academic Pub, USA, 2004) p350
[2] C.A. Di, Y. Liu, G. Yu, and D. Zhu, Acc. Chem. Res. 42,1573 (2009)
[3] Y. Shirota, and H. Kageyama, Chem. Rev. 107, 953□□2007)
[4] A. Facchetti, Materialstoday,10,3(2007)
[5] D. J. Carswell, Nature 173, 736 (1954)
[6] H. Klauk, D. J. Gundlach, J. A. Nichols, T. N. Jackson, IEEE Trans. Electron Dev. 46, 1258 (1999)
[7] Z. Rang, A. Haraldsson, D. M. Kim, P. P. Ruden, M. I. Nathan, R. J. Chesterfield, and C. D. Frisbie, Appl. Phys. Lett. 79, 2731(2001)
[8] G. Horowitz, D. Fichou, X. Peng and F. Garnier, Synth. Met. 41, 1127 (1991)
[9] O. D. Jurchescu, M. Popinciuc, B. J. van Wees and T.T. M. Palstra
Adv. Mater. 19, 688 (2007)
[12] S. Lee, B. Koo, E. Lee, H. Park and H. Kim, Appl. Phys. Lett. 88, 162109 (2006)
[11] M. M. Payne, S. R. Parkin, J. E. Anthony, C. Kuo and T. N. Jackson
J. Am. Chem. Soc. 127, 4969 (2005)
[12] T. Mori Condens. Matter 20,184010 (2008)
[13] McCullough, R. D., Adv. Mater. 10, 93 (1998)
[14] A. Assadi, C. Svensson, M. Willander, and O. Inganäs, Appl. Phys. Lett. 53, 195(1988)
[15] A. Babel, S. A. Jenekhe, Synth. Met. 148, 169 (2005)
[16] A. Zen, M. Saphiannikova,; D. Neher,; U. Asawapirom,; U. Scherf,
Chem. Mater.17, 781 (2005)
[17] A.C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay and A. Salleo, Chem. Rev, 110, 3 ( 2010)
[18] D. Gamota,P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics (Kluwer Academic Pub, USA, 2004) p373
[19] M. Ahles; R. Schmechel, H. V. Seggern, Appl. Phys. Lett.
85, 4499 (2004)
[20] T.Yasuda, T. Tsutsui, Chem. Phys. Lett., 402, 395 (2005)
[21] Yasuda T, Goto T, Fujita K and Tsutsui T Appl. Phys.Lett. 85, 2098 (2004)
[22]H. W. Zan and C. W. Chou, Jpn. J. Appl. Phys. 48, 031501 (2009)
[23] S.Y. Kwak, C. G. Choi, and B. S. Bae, Electrochem. Solid-State Lett. 12, G37 (2009)
[24] M. Gad-el-Hak, The MEMS Handbook (CRC Press, FL, 2002) p16-55
[25] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002)
[26] Y. H. Lo, Emerging Optoelectronic Technologies and Applications (world scientific,1997) p251
[27] B.G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, (Springer, Berlin 2003) p70
[28] B.G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, (Springer, Berlin 2003) p61
[29] C. I. Ho, Investigations of Temperature and Optical Illumination on Organic Thin Film Transistors for AMLCD Applications, (NSYSU, M.S. thesis, 2005) p6
[30] O. Ostroverkhova, D. G. Cooke, S. Shcherbyna, R. F. Egerton, F. A. Hegmann, R. R. Tykwinski, and J. E. Anthony,. Phys. Rev. B 71, 35204 (2005).
[31] Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Phys.Rev.Lett. 95, 226601 (2005).
[32] D. Braga, and G. Horowitz, Adv. Mater. 21,1473 (2009).
[33] P. H. Wöbkenberg, Thin‐Film Transistors for Large Area Opto/Electronics ( Imperial College, Ph.D. thesis, 2009) p35
[34] Z. An, Perylene-based Materials: Potential Components in Organic Electronics and Optoelectronics (Georgia Institute of Technology, Ph.D. thesis, 2005) p6
[35] W Warta, R.Stehle, N.Karl, Appl. Phys. A 36, 163 (1985).
[36] F. So, Organic Electronics: Materials, Processing, Devices and Applications (CRC Press, FL, 2002) p66
[37] A. Miller, and E. Abrahams, Phys. Rev. 120, 745 (1960)
[38] A. K. Tripathi, Structural and Electronic Characterization of Single Crystals of Ambipolar Organic Semiconductors: Diindenoperylene and Diphenylanthracene (Indien, Ph.D.thesis, 2008) p35
[39] C. Karnutsch, Low threshold organic thin-film laser devices (Cuvillier Verlag Gottingen, 2007) p13.
[40] P. M. Borsenberger, W.T. Gruenbaum and E. H. Magin, Jpn. J. Appl. Phys. 35, 2698 (1996)
[41] G. Dennler, N. S. Sariciftci, and C. J. Brabec, Conjugated polymer-based organic solar cells in Semiconducting Polymers, 2nd ed., edited by G. Hadziioannou and G. Malliaras (Wiley-VCH Verlag GmbH, Weinheim, 2006). p498
[42] P. G. Le Comber and W. E. Spear, Phys. Rev. Lett. 25, 509 (1970)
[43] G. Meller, T. Grasser, Advances in Polymer Science 223 (Springer Verlag, 2009) p123
[44] G. Hadziioannou and G. G. Malliaras, Semiconducting Polymers, Chemistry, Physics and Engineering 2 (Wiley-VCH, Weinheim, 2007) p599
[45] R.Ruiz, A. Papadimitratos, A. C. Mayer and G. G. Malliaras, Adv. Mater. 17 ,1795 (2005)
[46] X. Sun, C. A. Di and Y. Liu, J. Mater. Chem. 20, 2599 (2010)
[47] J. Veres, S. Ogier, and G. Lloyd, Chem. Mater.16, 4543 (2004)
[48] Y. Jung, R. J. Kline, D. A. Fischer, E. K. Lin, M. Heeney, I. McCulloch, and D. M. DeLongchamp, Adv. Funct. Mater. 18, 7429 (2008)
[49] L. L. Chua, P. K. H. Ho, H. Sirrenghaus and R. H. Friend, Adv. Mater.16, 1609 (2004)
[50] D. Knipp, R. A. Street, A. VÖ lkel, Appl. Phys. Lett. 82, 3907 (2003).
[51] H. W. Zan and C. W. Chou, Jpn. J. Appl. Phys. 48, 031501 (2009)
[52] S.Y. Kwak, C. G. Choi, and B. S. Bae, Electrochem. Solid-State Lett. 12, G37 (2009)
[53] D. H. Kim, D. W. Kim, K. S. Kim, H. J. Kim, J. S. Moon, M. P. Hong, B. S. Kim, J. H. Shin Y. M. Kim, K. K.Song and S. S. Shin Jpn. J. Appl. Phys. 47,5672 (2008)
[54]S. Y. Yang, K. Shin and C. E. Park, Adv. Funct. Mater.15,1806 (2005)
[55] T. Umeda, D. Kumaki and S. Tokito, J. Appl. Phys. 105, 024516 (2009)
[56] H. W. Zan, K. H. Yen , P. K. Liu , K. H. Kc, C. H. Chen, J. Hwang, Organic Electronic 8, 450 (2007)
[57] S. Jeong, D. Kim, B. K. Park, S. Lee, and J. Moon, Nanotechnology, 18, 025204 (2007)
[58] J. Veres, S. Ogier, and G. Lloyd Chem. Mater. 16, 4543 (2004)
[59] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa and A. Iwasa, Nat. Mater.3, 317 (2004)
[60] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid and G. Schitter, J. Appl. Phys. 96 , 6431 (2004)
[61] S. H. Kim, H. Yang, S. Y. Yang, K. Hong, D. Choi, C. Yang, D. S. Chung and C. E. Park, Org. Electron. 9, 673 (2008)
[62] J.H. Lau, C.P. Wong, N. C. Lee, S.W. R. Lee, Electronics Manufacturing: with Lead-free, Halogen-free, and Conductive-adhesive Materials (McGraw-Hill, New Youk, 2002 )p14.1-14.10
[63] C. Tornkvist, D. Thierry, J. Bergman, B. Liedberg, and C.Leygraf, J. Electrochem. Soc. 136, 58 (1989)
[64] H. J. Kim, K. W. Paik, J. Electron. Mater. 37,1003 (2008).
[65] M. L. Lewis, L. Ledung, and K. T. Carron, langmuir 9,186 (1993)
[66] A. Facchetti, Materialstoday10, 3(2007)
[67] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J. L Brédas. Chem. Rev. 107, 926 □ 2007)
[68] G. Horowitz, Adv. Mater.10, 365 (1998)
[69] D. Braga, and G. Horowitz , Adv. Mater. 21,1473 (2009)
[70] M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter 20, 184011 (2008)
[71] D. R.Gamota, P. Brazis, K. Paul, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics, ( Kluwer Academic Pub, 2004) p9
Ch3
[1] H. Fujita, Micromachines as tools for nanotechnology (Springer Verlag, New York, 2003) p124
[2] J. C. Vickerman, Surface Analysis: the principal techniques (John & Sons, U.K., 1997) p 74.
[3] M. Birkholz, P. F. Fewster, C. Genzel, Thin film analysis by X-ray scattering (John Wiley & Sons Inc, Germany, 2006) p10
[4] B. Stuart, Infrared spectroscopy: Fundamental and applications (John Wiley & Sons Inc, England , 2004) p8
[5] Yen K S, Study of hexgonal hillocks on AlxGa1-x thin film (NTCU, MA thesis, 2004) p31
Ch4
[1]. A. Sazonov, D. Striakhilev, C. H. Lee, and A. Nathan, Proc. IEEE 93, 1420 (2005).
[2] H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
[3]. S. K. Park, D. A. Mouery, J. E. Anthony, and T. N. Jackson, Appl. Phys. Lett. 91, 063514 (2007).
[4]. D. Kim, S. Jeong, S. Lee, B. K. Park, and J. Moon, Thin Solid Films 515, 7692 (2007).
[5]. H. Y. Choi, S. H. Kim, and J. Jang, Adv. Mater. 16, 732 (2004).
[6]. B. Stadlober, M. Zirkl, M. Beutl, G. Leising, S. B. Gogonea, and S. Bauer, Appl. Phys. Lett. 86, 242902 (2005).
[7]. Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, Appl. Phys. Lett. 88, 072101 (2006).
[8]. Th. B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, and N. S. Sariciftci, Adv. Mater. 17, 2315 (2005).
[9]. P. Fontaine, D. Goguenheim, D. Deresmes, D. Vuillaume, M. Garet, and F. Rondelez, Appl. Phys. Lett. 62, 2256 (1993).
[10]. J. Collet, O. Tharaud, A. Chapoton, and D. Vuillaume, Appl. Phys. Lett. 76, 1941 (2000).
[11]. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).
[12].Y. D. Park, D. H. Kim, Y. Jang, M. Hwang, J. A. Lim, and K. Cho, Appl. Phys. Lett. 87, 243509 (2005).
[13]. P. H. Wöbkenberg, J. Ball, F. B. Kooistra, J. C. Hummelen,
D. M. de Leeuw, D. D. C. Bradley, and T. D. Anthopoulos, Appl. Phys. Lett. 93, 013303 (2008).
[14]. H. Ma, O. Acton, G. Ting, J. W. Ka, H. L. Yip, N. Tucker, R. Schofield, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 113303 (2008).
[15]. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature (London) 445, 745 (2007).
[16] .H. J. Kim, K. W. Paik, J. Electron. Mater. 37, 1003 (2008).
[17]. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
[18]. Y. G. Seol, J. G. Lee, and N. E. Lee, Org. Electron. 8, 513 (2007).
Ch5
[1] C. F.Combs, Jr., Printed circuits handbook (McGraw-Hill, USA, 2007) p32.8
[2] J. Bath, Lead-Free Soldering (Springer Verlag, New York, 2007) p228
[3] J.H. Lau, C.P. Wong, N. C. Lee, S.W. R. Lee, Electronics Manufacturing: with Lead-free, Halogen-free, and Conductive-adhesive Materials (McGraw-Hill, New Youk, 2002 )p14.1-14.10
[4] H. J. Kim, K. W. Paik, J. Electron. Mater. 37, 1003 (2008).
[5] M. L. Lewis, L. Ledung, and K. T. Carron, Langmuir, 9, 186 (1993).
[6] D.P. Drolet, D. M. Manuta, A. J. Lees, Inorg. Chim. Acta.146,173 (1988)
[7] G. Xue, J. Zhang, G. Shi, and Y. Wu, J. Chem. Soc. Perkin Trans. II, 33 (1989)
[8] G. Xue, J. Ding, P.W. Wu and G. Ji, J. Electroanal. Chem. 270,163 (1989)
[9] D. M. Spori, V. N. Venkataraman, S. G. P. Tosatti, F. Durmaz, N. D.Spencer, and S. Zürcher Langmuir, 23, 8053 (2007)
[10] Y. D. Park, D. H. Kim, Y. Jang, J. H. Cho, M. Hwang, H. S. Lee, J. A. Lim, and K. Cho, Org. Electron.7, 514 (2006)
Ch6
[1] H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
[2] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science 290, 2123 (2000) .
[3] H. Yan, Z. Chen, Y. Zheng, C. R. Newman, J. R. Quinn, F. Dolz, M. Kastler, and A. Facchetti, Nature (London) 457, 679 (2009).
[4] A. Facchetti, M. H. Yoon, and T. J. Marks, Adv. Mater. (Weinheim, Ger.) 17, 1705 (2005).
[5] J. Veres, S. Ogier, G. Lloyd, and D. de Leeuw, Chem. Mater. 16, 4543 (2004).
[6] P. Fontaine, D. Goguenheim, D. Deresmes, D. Vuillaume, M. Garet, and F. Rondelez, Appl. Phys. Lett. 62, 2256 (1993).
[7] J. Collet, O. Tharaud, A. Chapoton, and D. Vuillaume, Appl. Phys. Lett. 76, 1941 (2000) .
[8] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).
[9] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature (London) 445, 745 (2007).
[10] G. Xue, S. Jiang, X. Huang, G. Shi, J. Chem. Soc. Dalton Trans. 1487 (1988).
[11] G. Xue, J. F. Ding, P. Y. Wu, and G. D. Ji, J. Electroanal Chem. 270, 163 (1989).
[12] H. J. Kim, K. W. Paik, J. Electron. Mater. 37, 1003 (2008).
[13] R. L. Opila, H. W. Krautter, B. R. Zegarski, and L. H. Dubois, J. Electrochem. Soc., 142, 4074 (1995)
[14] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
[15] D. Knipp, R. A. Street, A. VÖ lkel, Appl. Phys. Lett. 82, 3907 (2003).
[16] X. Sun, C. A. Di and Y. Liu, J. Mater. Chem. 20, 2599 (2010)
Ch7
[1] A.C.Arias, J.D. MacKenzie,I. McCulloch,J. Rivany, and A. Salleo, Chem. Rev. 110, 3 (2010)
[2] J. Li, F. Qin, C. M. Li, Q. Bao, M. B. Chan-Park, W. Zhang, J. Qin, B. S. Ong, Chem. Mater. 20, 2057 (2008)
[3] S. J. Choi, S. Lee, K. K. Han, K .Lee, D. Kim, J. Kim and H.H. Lee, Appl. Phys. Lett. 90, 063507 (2007)
[4] M. H. Yoon, A. Facchetti, and T. J. Marks, Proc. Natl. Acad. Sci. U.S.A. 102, 4678 (2005)
[5] H. Kim, R. C. Y Auyeung, S. H. Lee, A. L. Huston1 and A. Piqu´e, J. Phys. D: Appl. Phys. 43,085101 (2010)
[6] S. W. Chen, C. H. Wang, and J. Hwang, Appl. Phys. Lett. 94, 243303 (2009).
[7] S. W. Chen, C. Y. Hsieh, C. H. Wang, and J. Hwang, Electrochem. Solid State Lett. 13, H230 (2010)
[8] U. Zschieschang, M. Halik, and H. Klauk, Langmuir 24, 1665 (2008)
[9] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981)
[10] S. Pyo, H. Son, K. Y. Choi and M. H. Yi, Appl. Phys. Lett. 86, 133508 (2005).
[11] W. J. Kim, W. H. Koo, S. J. Jo, C. S. Kim,.H. K. Baik,D. K. Hwang, K. Lee, J. H. Kim and S. Im., Electrochem. Solid State Lett. 9, G251 (2006)
[12] C. Yang, J. Yoon, S. H. Kim, K. Hong, D. S. Chung, K. Heo, C. E. Park and M. Ree, Appl. Phys. Lett. 92, 243305 (2008)
[13] Y. G. Seol, H. Y. Noh, S. S. Lee, J. H. Ahn and N. E. Lee, Appl. Phys. Lett. 93, 13305 (2008)
[14] T. Ahn, J. W. Kim, Y. Choi and M. H. Yi, Org. Electron.9, 711 (2008)
[15] M. F. Chang, P. T. Lee, S. P. McAlister and A. Chin, IEEE Electron Dev. Lett. 30,134 (2009)
[16] K. H. Cho, T. G. Seong, J.Y. Choi, J. S. Kim, J. H. Kwon, S. I. Shin, M. H. Chung, B. K. Ju and S. Nahm, Langmuir 25,12349 (2009),
[17] K. H. Lee, K. Lee, M. S. Oh, J. M. Choi, S. Im, S. Jang and E Kim, Org. Electron.10, 194 (2009)