簡易檢索 / 詳目顯示

研究生: 張馨尹
Chang, Hsin Yin
論文名稱: 應用資料壓縮實現更具效率且經濟的雲端儲存系統
Apply data compression to achieve faster and cheaper cloud backend file system
指導教授: 周志遠
Jerry Chou
口試委員: 李哲榮
許慶賢
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 43
中文關鍵詞: 雲端儲存檔案系統快取壓縮
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,因為資料量成長的速度急劇上升,如何有效率的管理和存取這些資料變得越來越重要。對於這樣的情況來說,混合雲是一種適合的解決方法。在我們的系統中,我們一方面使用公共雲來存放所有的檔案,另一方面也將私有雲當作快取來使用。由於壓縮這項技術,可能會為混合雲這樣系統帶來更多優勢,因此我們將它應用在我們的系統之中。在這篇論文中,我們分別對公共雲和私有雲應用了以壓縮為基礎的方法來改善系統整體效能和減少在公共雲上對於儲存的花費。在私有雲上,我們會在存取檔案但失誤時,為該檔案以適合的壓縮方式壓縮後再存入私有雲;而在公共雲上,我們則為所有的檔案選擇適合他們的壓縮方式。當我們在做選擇時,我們除了會考慮每個檔案的特性(如檔案大小、讀和寫的比例)和每種壓縮演算法的特性(如壓縮比、壓縮和解壓縮時的計算時間)之外,也會考慮私有雲目前的狀態以及使用者對於公共雲反應時間的要求。最後我們也分別以模擬和真實世界的數據來評估我們的方法,而兩者的結果都說明在系統上應用壓縮確實能改善效能以及減少儲存方面的花費。


    The amount of data is rapidly in recent years.
    The ability to store those data and the efficiency of accessing become more important.
    Hybrid cloud storage is a suitable solution for such a situation.
    We use public cloud storage to backup all files, and use private cloud storage as cache in our system.
    While compression have the chance to enhance the benefit from hybrid cloud storage, we apply it to our system.
    In this paper, we introduce an approach for both public and private sides to improve performance and save storage cost.
    We choose a suitable compression algorithm for the requested file when it is missing in private side.
    And we find a combination of compression algorithms for all files in public side.
    In our approach, we make the decision based on file characteristics(file size, write-read ratio, etc) and algorithm characteristics (compression time, decompression time and compression ratio).
    Moreover, we also consider the cache list in private side and the constraint of response time in public cloud storage.
    We evaluate our approach using simulation and real trace, and the improvement of performance and the saving of storage cost can be seen in the results.

    1. Introduction 3 2.Background 6 2-1.Hybrid Cloud Storage System 6 2-2.Processing flow 7 2-3.Data Compression 8 3.Approach 10 3-1.Approach at Cache side 10 3-2.Approach at Cloud side 12 4.Set up 14 4-1.Simulation Setting 14 4-2.Experiment Setting 15 5.Simulation 16 5-1.Result at Cache side 16 5-1-1.Overall Result 16 5-1-2.Analysis of Compression Rate and Response time 17 5-2.Result at Cloud side 18 5-2-1.Overall Result 18 5-2-2.Analysis of Algorithm Composition 19 5-3.Result of Combining Cache side and Cloud side 20 5-3-1.Overall Result 20 5-3-2.Result When Changing Workload 21 6.Experiment 32 6-1.Response time Analysis 32 6-2.Storage Cost and Transferring Cost 33 7.Related work 37 8.Conclusion 40

    1. Adaptive Cache Compression for High-Performance Processors
    2.DEPSKY: Dependable and Secure Storage in a Cloud-of-Clouds
    3.SCFS: A Shared Cloud-backed File System
    4.Deduplication and Compression Techniques in Cloud Design
    5.Measurement and Analysis of Large-Scale Network File System Workloads
    6.Workload Analysis of a Large-Scale Key-Value Store
    7.Hybris: Robust Hybrid Cloud Storage
    8.To Zip or not to Zip: Effective Resource Usage for Real-Time Compression
    9.Characteristics of File System Workloads
    10.A Comparison of File System Workloads
    11.Cmpres: To Save Your Cloud World Compressed
    12.RACS: A Case for Cloud Storage Diversity
    13.Frugal Storage for Cloud File System
    14.Evaluating Adaptive Compression to Mitigate the Effects of Shared I/O in Clouds
    15.Cumulus: Filesystem Backup to the Cloud
    16.Efficiency of lossless data compression
    17.An Approach for Data Privacy in Hybrid Cloud Environment
    18.Adaptive Compressed Caching: Design and Implementation
    19.Cost-Optimal Scheduling in Hybrid IaaS Clouds for Deadline Constrained Workloads
    20.ECM: Effective Capacity Maximizer for High-Performance Compressed Caching
    21.Comparison of Lossless Data Compression Algorithms for Text Data
    22.C-Pack: A High-Performance Microprocessor Cache Compression Algorithm
    23.A Hybrid Cloud Storage Architecture for Service Operational High Availability
    24.SAM: A Semantic-Aware Multi-Tiered Source De-duplication Framework for Cloud Backup

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE