簡易檢索 / 詳目顯示

研究生: 葉家豪
論文名稱: 高爐燃燒尾氣的二氧化碳捕捉
指導教授: 鄭西顯
口試委員: 汪上曉
錢義隆
張玨庭
陳誠亮
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 64
中文關鍵詞: 二氧化碳吸收氣提捕捉廢氣
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化碳的排放造成全球氣候變遷,是近年來世界各國所重視的課題。未來除了提高能源使用效率外,捕捉二氧化碳之回收,可減少大氣中二氧化碳的濃度;而在吸收之基礎研究及製程開發上已經有不少論文發表於國際期刊中,為此我們在一鋼鐵廠建立一個吸收脫附實驗工場,以不同的吸收劑作為相關操作研究的依據,並提供幾種方法來達到節能的結果。
    本論文的主要研究成果為下列 :
    1.製程之最佳化操作模擬評估與最佳化操作條件現場測試
    模擬以MEA水溶液為吸收劑,達到去除率90%以上及100kg CO2/day的標準,再配合現場數據進行比較。
    2.更換吸收劑於現場操作實驗
    更換新型溶劑AMP+PZ與DETA+PZ,在線上工場進行實驗並計算其能耗,在與MEA溶劑去比較能耗可以降低多少。
    3.綜合設備及製程改善方案
    現階段能耗約在5.6GJ/ton CO2,但操作結果並未達到歐盟要求的捕捉能耗標準3.2GJ/Ton CO2;若需降至歐盟標準,評估可行方法為:加大熱交換面積以增加熱回收、增加氣提塔壓力、更換新型溶劑或使用濃度較高的溶劑。改善方案中模擬熱回收與增加氣提塔壓力,來評估可降低多少能耗。


    謝誌 I 摘要 II 目錄 III 圖目錄 V 表目錄 X 第一章、緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 文獻回顧 4 第二章、研究方法 9 2.1 研究架構圖 9 2.2 aspen plus 模型建立 10 2.2.1 選取模型 10 2.2.2 Aspen plus吸收塔氣提塔模型建製 13 2.3 製程之最佳化操作模擬 16 2.4實驗工廠測試 19 2.4.1 實驗工廠系統介紹 19 2.4.2 不同吸收劑對二氧化碳吸收之影響 21 第三章、研究結果 23 3.1 20%MEA最佳化操作條件現場實驗結果 23 3.2 20%AMP+10%PZ最佳化操作條件現場實驗結果 28 3.3 20%DETA+10%PZ最佳化操作條件現場實驗結果 33 第四章、結論 38 4.1 實驗結果討論 38 4.2 綜合設備與製程改善 39 4.2.1 熱回收模擬 39 4.2.2 增加氣提塔壓力 40 4.2.3 更換填充物增加塔高 40 第五章、參考文獻 41 第六章、附錄 43

    1. Patrick J. Robinson and William L. Luyben, Integrated Gasification Combined CycleDynamic Model: H2S Absorption/Stripping, Water-Gas Shift Reactors, and CO2 Absorption/Stripping, Ind. Eng. Chem. Res., 2010. 49: p. 4766-4781.
    2. Caplow, M., Kinetics of Carbamate Formation and Breakdown. Journal of the American Chemical Society, 1968. 90(24): p. 6795-6803.
    3. Danckwerts, P.V., The Reaction of Co2 with Ethanolamines. Chemical Engineering Science, 1979. 34(4): p. 443-446.
    4. Blauwhoff, P.M.M., G.F. Versteeg, and W.P.M. Vanswaaij, A Study on the Reaction between Co2 and Alkanolamines in Aqueous-Solutions. Chemical Engineering Science, 1984. 39(2): p. 207-225.
    5. Rinker, E.B., S.S. Ashour, and O.C. Sandall, Kinetics and Modeling of Carbon-Dioxide Absorption into Aqueous-Solutions of N-Methyldiethanolamine. Chemical Engineering Science, 1995. 50(5): p. 755-768.
    6. Donaldson, T.L. and Y.N. Nguyen, Carbon-Dioxide Reaction-Kinetics and Transport in Aqueous Amine Membranes. Industrial & Engineering Chemistry Fundamentals, 1980. 19(3): p. 260-266.
    7. Aroonwilas, A. and P. Tontiwachwuthikul, High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP). Separation and Purification Technology, 1997. 12(1): p. 67-79.
    8. Aroonwilas, A. and P. Tontiwachwuthikul, Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol (AMP) using structured packing. Ind. Eng. Chem. Res., 1998. 37(2): p. 569-575.
    9. Liao, C.H. and M.H. Li, Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine plus N-methyldiethanolamine. Chemical Engineering Science, 2002. 57(21): p. 4569-4582.
    10. Ross Duga and G.T. Rochelle,Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine. Energy Procedia , 2009. p. 1163-1169.
    11. Bishnoi, S. and G.T. Rochelle, Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chemical Engineering Science, 2000. 55(22): p. 5531-5543.
    12. Ardi Hartono, Eirik F. da Silva, Hans Grasdalen, and Hallvard F. Svendsen ,
    Qualitative Determination of Species in DETA-H2O-CO2 System Using 13C NMR Spectra. Ind. Eng. Chem. Res., 2007. 46: p. 249-254.
    13. Ardi Hartono, Eirik F. da Silva, Hallvard F. Svendsen, Kinetics of carbon
    dioxide absorption in aqueous solution of diethylenetriamine (DETA ). Chemical
    Engineering Science , 2009. 64: p. 3205-3213.
    14. Oyenekan, B.A. and G.T. Rochelle, Alternative stripper configurations for CO2 capture by aqueous amines. AIChE Journal , 2007. 53(12): p. 3144-3154.
    15. Zhang, X., et al., A kinetics study on the absorption of carbon dioxide into a mixed aqueous solution of methyldiethanolamine and piperazine. Ind. Eng. Chem. Res., 2001. 40(17): p. 3785-3791.
    16. Bishnoi, S. and G.T. Rochelle, Thermodynamics of piperazine/methyldiethanolamine/water/carbon dioxide. Ind. Eng. Chem. Res., 2002. 41(3): p. 604-612.
    17. C.-C. Chen, H.I. Britt, J.F. Boston, and L.B. Evans, "Local Compositions Model
    for Excess Gibbs Energy of Electrolyte Systems: Part I: Single Solvent, Single Completely Dissociated Electrolyte Systems:, AIChE Journal , 1982. 28(4): p. 588-596.
    18. C.-C. Chen, and L.B. Evans, "A Local Composition Model for the Excess Gibbs
    Energy of Aqueous Electrolyte Systems," AIChE Journal , 1986. 32(3): p.
    444-459.
    19. Jassim, M. S. and G. T. Rochelle., Innovative Absorber/Stripper Configurations for CO2 Capture by Aqueous Monoethanolamine., Ind. Eng. Chem. Res., 2006. 45(8): p. 2465-2472.
    20. M. A. Pacheco and G. T.Rochelle, Rate-Based Modeling of Reactive Absorption of CO2 and H2S into Aqueous Methyldiethanolamine , Ind. Eng. Chem. Res.,1998. 37: p. 4107-4117
    21. Freguia, S. and G. T. Rochelle, Modeling of CO2 Capture by Aqueous Monoethanolamine. AIChE Journal , 2003. 49(7): p. 1676-1686.
    22. Tobiesen, F. A., H. F. Svendsen, et al., "Desorber energy consumption in amine based absorption plants., Int. J of Green Energy, 2005. 2: p. 1-15.
    23. Weiland, R. H., M. Rawal, et al. Stripping of carbon dioxide from monoethanolamine solutions in a packed column. AIChE Journal , 1982. 28(6): p. 963-973.
    24. Feron, P. H. M., Progress in Post-combustion CO2 Capture. In European CO2 Capture and Storage Conference Towards Zero Emission Power Plants, Brussels, Belgium, 2005.
    25. Chi, Y.W., The Pilot Plant Modeling of CO2 Capture Process , National Tsing Hua University Taiwan, Master. Dissertation. 2010

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE