研究生: |
朱盈樺 Chu, Ying-Hua |
---|---|
論文名稱: |
結合簡易影像分析技術及離心式微流體裝置發展快速定量環境水樣中六價鉻分析技術之可行性評估 Investigation of the Feasibility Using Centrifugal Microdevice Coupled with Simple Image Analysis Technique for Rapid Determination of Chromium(VI) in Natural Water |
指導教授: |
孫毓璋
Sun, Yuh-Chang |
口試委員: |
楊末雄
瞿港華 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 離心式微流體裝置 、六價鉻 、環境水樣 |
外文關鍵詞: | Centrifugal microdevice, Chromium(VI), Environmental water samples |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鉻 (Chromium) 所造成的環境污染與鋼鐵、皮革、顏料和橡膠等工業活動相當息息相關。一般而言,鉻主要以帶正電的三價鉻物種 (Cr(III)) 和帶負電的六價鉻物種 (Cr(VI)) 兩種形式存在。對蛋白質和脂肪代謝而言,三價鉻是必需元素。相反地,六價鉻則會導致去氧核糖核酸 (Deoxyribonucleic Acid, DNA) 的損壞,使細胞有可能因此發生病變。基於六價鉻具有相當強的毒性,因此環境水樣中六價鉻的快速測定對於評估其對環境和人類的影響一直相當高的重要性。
有鑑於微流體技術的獨特優點,如試劑和功率消耗量低、方便攜帶可供即時監測、製造成本低廉和多樣化設計,在過去的幾十年裡,此一技術已成為相當引人注目的分析技術。在數種微流體技術中,離心裝置近年來備受關注,相較於其他微流體系統中常用的操作方法而言,離心裝置藉由離心力驅動樣品和試劑,因此不需要使用任何幫浦作為驅動力。
本研究旨在開發一套離心微流體裝置,其包含了一個固相萃取管柱和流體控制閥,並搭配簡易的影像分析技術來定量六價鉻。根據實驗結果顯示,在最適化的條件下 (調態操作轉速:2000 rpm;樣品pH值:pH3;氫氧化鈉濃度:3 M;雙氧水濃度:5 M;第一道沖提試劑量:20 uL;第二道沖提試劑量:20 uL;第三道沖提試劑量:10 uL),本研究僅需15分鐘即可完成分析6組分析物,且六價鉻的偵測極限可達1.69 mg L─1。由此足見,本系統確實為一套具有潛力的六價鉻分析技術。
Environmental pollution caused by chromium (Cr) is closely related to the industrial activities, such as steel, leather, pigment and rubber industries. Typically, Cr exists either as cationic trivalent species (i.e., Cr(III)) or anionic hexavalent species (i.e., Cr(VI)). Cr(III) species are essential in protein and lipid metabolism. In contrast, Cr(VI) species are capable of inducing deoxyribonucleic acid (DNA) damage leading to potential cell transforming effects. Considering Cr(III) species are prone to form more toxic Cr(VI) species in the environment, the determination of Cr(VI) is critical for evaluating their impacts on the environment and human being.
Over past decades, the microfluidic-based technology has emerged as a popular methodology for analytical work due to their unique advantages such as low reagent/power consumption, portability for in-situ use, low fabrication cost, and versatile design. Among several microfluidic-based techniques available, centrifugal microdevices have attracted much attention in recent years. Compared to the usual methods for fluid manipulation in miniaturized systems, the sample/reagent solutions are driven by centrifugal force without the use of any other pumping equipment. Thus, more compact designs for analytical systems can be expected.
In this study, we developed a centrifugal device including a glucamine-packed solid phase extraction column and in-channel flow control valves. After coupling the developed centrifugal device to simple image analysis tools. Under the optimized condition, it merely needed 15 minutes to analyze six samples in a single run. The limit of detection of Cr(VI) were 1.69 mg L─1. Based on the analytical results, the proposed system was proven to be a promising platform for determination of Cr(VI).
(1) Sinha, S.; Saxena, R.; Singh, S. Chemosphere 2005, 58, 595-604.
(2) Laskou, M.; Economou-Eliopoulos, M. Miner Petrol 2013, 107, 471-486.
(3) Ashraf, A.; Bibi, I.; Niazi, N. K.; Ok, Y. S.; Murtaza, G.; Shahid, M.; Kunhikrishnan, A.; Li, D. W.; Mahmood, T. Int J Phytoremediat 2017, 19, 605-613.
(4) Rai, D.; Sass, B. M.; Moore, D. A. Inorg Chem 1987, 26, 345-349.
(5) 林亞胺; 江旭禎. 國立中山大學化學系 碩士論文 2015.
(6) Dhal, B.; Thatoi, H. N.; Das, N. N.; Pandey, B. D. J Hazard Mater 2013, 250, 272-291.
(7) Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N. K.; Dumat, C.; Rashid, M. I. Chemosphere 2017, 178, 513-533.
(8) Mertz, W. J Nutr 1993, 123, 626-633.
(9) Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; Montes, M.; de la Rosa, G.; Corral-Diaz, B. Bioresource Technol 2004, 92, 229-235.
(10) Kawanishi, S.; Inoue, S.; Sano, S. J Biol Chem 1986, 261, 5952-5958.
(11) Singh, J.; Carlisle, D. L.; Pritchard, D. E.; Patierno, S. R. Oncol Rep 1998, 5, 1307-1318.
(12) Sedman, R. M.; Beaumont, J.; McDonald, T. A.; Reynolds, S.; Krowech, G.; Howd, R. J Environ Sci Heal C 2006, 24, 155-182.
(13) Maite. Sanz Alaejos; Romero, C. D. Chem. Rev. 1995, 95, 227─257.
(14) Oliveira, A. P.; Neto, J. A. G.; Nóbrega, J. A.; Correia, P. R. M.; Oliveira, P. V. Food Chem. 2005, 93, 355─360.
(15) Miksa, I.; Buckley, C. L.; Carpenter, N. P.; Poppenga, R. H. J. Vet. Diagn. Invest. 2005, 17, 331─340.
(16) Gao, Y.; Liu, R.; Yang, L. Chin. Sci. Bull. 2013, 58, 1980─1991.
(17) D'Ulivo, A.; Gianfranceschi, L.; Lampugnani, L.; Zamboni, R. Spectroc. Acta Pt. B-Atom. Spectr. 2002, 57, 2081─2094.
(18) Lee, F. Lab-on-a-Chip: A Revolution in Instrumentation 1996.
(19) Manz, A.; Graber, N.; Widmer, H. M. Sensor Actuat B-Chem 1990, 1, 244-248.
(20) Harrison, D. J.; Manz, A.; Fan, Z. H.; Ludi, H.; Widmer, H. M. Anal Chem 1992, 64, 1926-1932.
(21) Harrison, D. J.; Fluri, K.; Seiler, K.; Fan, Z. H.; Effenhauser, C. S.; Manz, A. Science 1993, 261, 895-897.
(22) Ramsey, R. S.; Ramsey, J. M. Anal Chem 1997, 69, 1174-1178.
(23) He, B.; Tait, N.; Regnier, F. Anal Chem 1998, 70, 3790-3797.
(24) Boone, T.; Fan, Z. H.; Hooper, H.; Ricco, A.; Tan, H. D.; Williams, S. Anal Chem 2002, 74, 78a-86a.
(25) Klank, H.; Kutter, J. P.; Geschke, O. Lab Chip 2002, 2, 242-246.
(26) Cheng, J. Y.; Wei, C. W.; Hsu, K. H.; Young, T. H. Sensor Actuat B-Chem 2004, 99, 186-196.
(27) Martynova, L.; Locascio, L. E.; Gaitan, M.; Kramer, G. W.; Christensen, R. G.; MacCrehan, W. A. Anal Chem 1997, 69, 4783-4789.
(28) Roberts, M. A.; Rossier, J. S.; Bercier, P.; Girault, H. Anal Chem 1997, 69, 2035-2042.
(29) Ebara, M.; Hoffman, J. M.; Hoffman, A. S.; Stayton, P. S. Lab Chip 2006, 6, 843-848.
(30) Fogarty, B. A.; Heppert, K. E.; Cory, T. J.; Hulbutta, K. R.; Martin, R. S.; Lunte, S. M. Analyst 2005, 130, 924-930.
(31) 凌永健; 李佩玲; 邱郁凱; 殷裕勝. Chemistry(THE CHINESE CHEM. SOC., TAIPEI) 2007, 65, 425-437.
(32) Li, P.; Chen, Y. J.; Lian, H. Z.; Hu, X. J Anal Atom Spectrom 2014, 29, 1785-1790.
(33) Zhu, Y. Z.; Chen, Y. Q.; Meng, X. R.; Wang, J.; Lu, Y.; Xu, Y. C.; Cheng, J. Anal Chem 2017, 89, 9315-9321.
(34) Nagy, A.; Baranyai, E.; Gaspar, A. Microchem J 2014, 114, 216-222.
(35) Madou, M.; Zoval, J.; Jia, G.; Kido, H.; Kim, J.; Kim, N. Annu. Rev. Biomed. Eng. 2006, 8, 601-628.
(36) M. Focke, B.F., T. Hösel, C. Müller, J. Ducrée, and R. Zengerle and F. von Stetten. Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences. 2008, San Diego, California, USA.
(37) Shiiba, M.; Okada, N.; Kurosawa, M.; Takeuchi, S. Jpn J Appl Phys 2016, 55.
(38) Oh, S. J.; Park, B. H.; Jung, J. H.; Choi, G.; Lee, D. C.; Kim, D. H.; Seo, T. S. Biosens Bioelectron 2016, 75, 293-300.
(39) Oh, S. J.; Park, B. H.; Choi, G.; Seo, J. H.; Jung, J. H.; Choi, J. S.; Kim, D. H.; Seo, T. S. Lab Chip 2016, 16, 1917-1926.
(40) Park, B. H.; Kim, D.; Jung, J. H.; Oh, S. J.; Choi, G.; Lee, D. C.; Seo, T. S. Sensor Actuat B-Chem 2015, 209, 927-933.
(41) Ukita, Y.; Utsumi, Y.; Takamura, Y. Sensor Mater 2015, 27, 391-402.
(42) Geissler, M.; Clime, L.; Hoa, X. D.; Morton, K. J.; Hebert, H.; Poncelet, L.; Mounier, M.; Deschenes, M.; Gauthier, M. E.; Huszczynski, G.; Corneau, N.; Blais, B. W.; Veres, T. Anal Chem 2015, 87, 10565-10572.
(43) Clime, L.; Brassard, D.; Geissler, M.; Veres, T. Lab Chip 2015, 15, 2400-2411.
(44) Ukita, Y.; Takamura, Y.; Utsumi, Y. Sensor Actuat B-Chem 2015, 220, 180-183.
(45) Yuan, D. J.; Das, S. J Appl Phys 2007, 101, 024901.
(46) MASSEE, R.; MAESSEN, F. J. M. J. Anal. Chim. Acta 1981, 127, 181─193.
(47) 衛生福利部食品藥物管理署,.
(48) Lu, Y.; Shi, W. W.; Qin, J. H.; Lin, B. C. Electrophoresis 2009, 30, 579-582.
(49) Gandhi, M. R.; Viswanathan, N.; Meenakshi, S. Ion Exchange Letters 2010, 3, 25-35.
(50) Luo, C.; Tian, Z.; Yang, B.; Zhang, L.; Yan, S. Q. Chem Eng J 2013, 234, 256-265.
(51) Santander, I. P.; Rivas, B. L.; Urbano, B.; Leiton, L.; Ipek, I. Y.; Yuksel, M.; Kabay, N.; Bryjak, M. Polym Bull 2014, 71, 1813-1825.
(52) Martin-Camean, A.; Jos, A.; Calleja, A.; Gil, F.; Iglesias-Linares, A.; Solano, E.; Camean, A. M. Microchem J 2014, 114, 73-79.
(53) Bahadir, Z.; Bulut, V. N.; Hidalgo, M.; Soylak, M.; Margui, E. Spectrochim Acta B 2015, 107, 170-177.
(54) Vidal, L.; Silva, S. G.; Canals, A.; Nobrega, J. A. Talanta 2016, 148, 602-608.
(55) Khedri, N.; Ramezani, Z.; Rahbar, N. Int J Environ Sci Te 2016, 13, 2475-2484.
(56) Liu, R.; Zhang, P.; Li, H. J.; Zhang, C. S. Sensor Actuat B-Chem 2016, 236, 35-43.
(57) Sharma, S.; Umar, A.; Mehta, S. K.; Kansal, S. K. Ceram Int 2017, 43, 7011-7019.