簡易檢索 / 詳目顯示

研究生: 陳泉曄
Chen, Chuan-Yeh
論文名稱: 應用動態刀刃法與荷重元在矽晶圓對直接接合之研究
指導教授: 胡塵滌
口試委員: 胡塵滌
吳錫侃
楊聰仁
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 147
中文關鍵詞: 晶圓接合動態刀刃法荷重元奈米壓印系統微波處理熱癒合
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用動態刀刃法搭配荷重元分析晶圓對的接合界面能及刀刃背後荷重(局部接合力),探討界面能及刀刃荷重與試片尺寸之相關特性,以及經不同壓力均勻施壓製作之親、斥水性晶圓對,界面能及荷重的一致性。同時嘗試以微波加熱的方式,於短時間內,提升晶圓對的界面能,並比較親、斥水性晶圓對熱癒合及微波癒合行為的差異。
    完整晶圓對與不同寬度條狀試片有相近似的界面能,不隨試片寬度尺寸改變,而局部接合力則與試片寬度成正比。經奈米壓印系統施加不同壓力製作之親、斥水性晶圓對,界面能及刀刃荷重皆分別趨向一定值,不隨施壓壓力改變。
    親、斥水性晶圓對界面能及刀刃荷重皆因退火處理而增強,且拉長退火時間有助於界面能及荷重的提升。推測晶圓對經長時間退火處理,界面縮合聚合反應發展較完全,有較高的界面能及刀刃荷重。親水性晶圓對微波處理5分鐘,可快速提升界面能,強度媲美大氣爐400℃,120小時退火處理的效果,而斥水性者無此情形。推測因親水性晶圓對界面含水分子受微波影響,快速離開接合界面,使界面產生大量的矽氧矽(Si-O-Si)共價鍵結,界面能快速提升。對接合界面上缺乏水分子的斥水性晶圓對而言,微波處理僅是加熱,與大氣爐退火處理應差異不大,故未能快速提升界面能。
    經動態刀刃分析過之親水性晶圓對,施以高溫1000℃熱癒合處理,能使界面薄氧化矽層融成黏滯流,填補原先被刀刃劈開的裂口,界面能可恢復或超過刀刃分析前的強度。刀刃分析過之斥水性晶圓對經800℃較低溫熱癒合處理,就能使裂口癒合,推測是因接合界面矽原子擴散,填補原先被劈開的裂口,界面能可恢復或超過刀刃分析前的強度。運用微波處理,晶圓對表面溫度上升不到260℃,無法使刀刃分析過之晶圓對裂口癒合。


    第一章 前言 1 第二章 文獻回顧 3 2-1 晶圓接合簡介 3 2-2 晶圓接合之歷史回顧 3 2-3 接合機制簡介 5 2-3-1 親水性接合 5 2-3-2 斥水性接合 6 2-4 晶圓對接合界面能分析 6 2-5 晶圓對裂口癒合研究 8 2-6 微波加熱簡介 9 2-7 微波加熱應用於晶圓接合技術 11 2-8 晶圓接合之應用 12 2-8-1 同質晶圓接合之應用 13 2-8-2 異質晶圓接合之應用 15 2-9 封裝保護作用 17 第三章 實驗程序 43 3-1 晶圓表面清洗 43 3-2 接合製程 44 3-3 退火處理 45 3-3-1 大氣爐退火處理 45 3-3-2 微波處理 45 3-4 晶圓切割 46 3-5 親、斥水性晶圓對熱癒合及微波癒合研究 46 3-6 實驗分析與儀器介紹 47 3-6-1 原子力顯微鏡 47 3-6-2 水滴接觸角測試 47 3-6-3 熱壓式奈米壓印系統 47 3-6-4 紅外光照相術 48 3-6-5 接合處截面觀察 49 3-6-6 動態刀刃法與荷重元 49 3-6-7 界面能量測 51 第四章 結果與討論 61 4-1 表面粗糙度分析 61 4-2 水滴接觸角量測 61 4-3 均勻施壓對晶圓對接合性質影響之研究 62 4-4 不同寬度之晶圓對荷重及界面能研究 66 4-5 連續進刀對荷重及裂口長度之影響 67 4-6 退火時間對矽晶圓對接合性質影響之研究 69 4-7 微波處理對矽晶圓對接合性質之影響 72 4-8 晶圓對接合處截面觀察 74 4-9 親、斥水性晶圓對熱癒合及微波癒合研究 75 第五章 結論 140 參考文獻 142

    [1] W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, "Bonding of silicon wafers for silicon-on-insulator," Journal of Applied Physics, vol. 64, pp. 4943-4950, 1988.
    [2] T. Martini, J. Steinkirchner, and U. Gösele, "The Crack Opening Method in Silicon Wafer Bonding," Journal of The Electrochemical Society, vol. 144, pp. 354-357, 1997.
    [3] Chen-Yi Su, Shen Tsao, Li-Yang Huang, Chen-Ti Hu, "Distinguish Various Types of Defects in Bonded Wafer Pairs with the Dynamic Blade Insertion Method," Journal of The Electrochemical Society, vol. 157, pp. H792-H795, 2010.
    [4] Li-Yang Huang, Kuan-Lin Ho, Chen-Ti Hu, "Effects of homogenous loading on silicon direct bonding," Applied Surface Science, vol. 257, pp. 7693-7698, 2011.
    [5] 蔡馥亦, 國立清大學材料科學與工程研究所碩士論文,"空孔與顆粒缺陷在矽晶圓對界面中行為之研究 ",民國一百年。
    [6] Pin-Jan Wang, Chun-Chih Chuang, Chen-Ti Hu, "Recovery of Blade-Insertion-Tested Si Wafer Pairs by Thermal Healing," Journal of The Electrochemical Society, vol. 153, pp. G192-G196, 2006.
    [7] S. H. Christiansen, R. Singh, and U. Gösele, "Wafer Direct Bonding: From Advanced Substrate Engineering to Future Applications in Micro/Nanoelectronics," Proceedings of the IEEE, vol. 94, pp. 2060-2106, 2006.
    [8] J. Haisma, G.A.C.M. Spierings, "Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: Historical review in a broader scope and comparative outlook," Materials Science and Engineering: R: Reports, vol. 37, pp. 1-60, 2002.
    [9] Q.-Y. Tong and U. Gösele, "Semiconductor Wafer Bonding: Science and Technology." JOHN WILEY & SONS, INC., USA, 1999.
    [10] R. G. Horn, "Surface Forces and Their Action in Ceramic Materials," Journal of the American Ceramic Society, vol. 73, pp. 1117-1135, 1990.
    [11] K.-T. Wan, Douglas T. Smith, Brain R. Lawn, "Fracture and Contact Adhesion Energies of Mica-Mica, Silica-Silica, and Mica-Silica Interfaces in Dry and Moist Atmospheres," Journal of the American Ceramic Society, vol. 75, pp. 667-676, 1992.
    [12] J. B. Lasky, "Wafer Bonding for silicon-on-InsulatorTechnologies," Applied Physics Letters, vol. 48, pp. 78-80, 1986.
    [13] M. Shimbo, K Furukawa, K. Fukuda, K. Tanzawa, "Silicon-to-silicon direct bonding method," Journal of Applied Physics, vol. 60, pp. 2987-2989, 1986.
    [14] K.-Y. Ahn, R. Stengl, T. Y. Tan, U. Gösele, P. Smith, "Stability of interfacial oxide layers during silicon wafer bonding," Journal of Applied Physics, vol. 65, pp. 561-563, 1989.
    [15] H.Takagi, R. Maeda, T.R. Chung, and Suga, Tadatomo, "Low-temperature direct bonding of silicon and silicon dioxide by the surface activation method," Sensors and Actuators A: Physical, vol. 70, pp. 164-170, 1998.
    [16] N. Yabumoto, K. Minegishi, Y. Komine, and K. Saito, "Water-Adsorbed States On Silicon And Silicon-Oxide Surfaces Analyzed By Using Heavy-Water," Japanese Journal of Applied Physics Part 2-Letters, vol. 29, pp. L490-L493, Mar 1990.
    [17] Q. Y. Tong, T. H. Lee, U. Gösele, M. Reiche, J. Ramm, and E. Beck, "The role of surface chemistry in bonding of standard silicon wafers," Journal of The Electrochemical Society, vol. 144, pp. 384-389, Jan 1997.
    [18] S. Mack, H. Baumann, and U. Gösele, "Gas development at the interface of directly bonded silicon wafers: investigation on silicon-based pressure sensors," Sensors and Actuators A: Physical, vol. 56, pp. 273-277, 1996.
    [19] Y. J. Chabal, G. S. Higashi, K. Raghavachari, and V. A. Burrows, "Infrared spectroscopy of Si(111) and Si(100) surfaces after HF treatment: Hydrogen termination and surface morphology," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 7, pp. 2104-2109, 1989.
    [20] Y. Backlund, K. Ljungberg, and A. Soderbarg, "A suggested mechanism for silicon direct bonding from studying hydrophilic and hydrophobic surfaces," Journal of Micromechanics and Microengineering, vol. 2, p. 158, 1992.
    [21] E. Toyoda, A. Sakai, H. Isogai, T. Senda, K. Izunome, O. Nakatsuka, M. Ogawa, S. Zaima, "Mechanical Properties and Chemical Reactions at the Directly Bonded Si-Si Interface," Japanese Journal of Applied Physics, vol. 48, Jan 2009.
    [22] K. Ljungberg, Y. Backlund, A. Soderbarg, M. Bergh, M. O. Andersson, and S. Bengtsson, "The Effects of HF Cleaning Prior to Silicon-Wafer Bonding," Journal of The Electrochemical Society, vol. 142, pp. 1297-1303, Apr 1995.
    [23] Ö. Vallin, K. Jonsson, and U. Lindberg, "Adhesion quantification methods for wafer bonding," Materials Science and Engineering: R: Reports, vol. 50, pp. 109-165, 2005.
    [24] X. X. Zhang and J. P. Raskin, "A dynamic study for wafer-level bonding strength uniformity in low-temperature wafer bonding," Electrochemical and Solid State Letters, vol. 8, pp. G268-G270, 2005 2005.
    [25] X. X. Zhang and J. P. Raskin, "Investigation on the uniformity of surface energy in silicon direct-bonding technique," Journal of The Electrochemical Society, vol. 151, pp. G568-G573, 2004 2004.
    [26] E. T. Thostenson and T. W. Chou, "Microwave processing: fundamentals and applications," Composites Part A: Applied Science and Manufacturing, vol. 30, pp. 1055-1071, 1999.
    [27] 方世杰, 國立清華大材料科學工程學系博士論文,"非晶矽薄膜之微波結晶研究", 民國一百年.
    [28] A. G. Whittaker and D. M. P. Mingos, "Microwave-assisted solid-state reactions involving metal powders," Journal of the Chemical Society, Dalton Transactions, pp. 2073-2079, 1995.
    [29] K. E. Haque, "Microwave energy for mineral treatment processes—a brief review," International Journal of Mineral Processing, vol. 57, pp. 1-24, 1999.
    [30] D. Acierno, A. Barba, and M. d’Amore, "Heat transfer phenomena during processing materials with microwave energy," Heat and Mass Transfer, vol. 40, pp. 413-420, 2004.
    [31] D. E. Clark, D. C. Folz, and J. K. West, "Processing materials with microwave energy," Materials Science and Engineering: A, vol. 287, pp. 153-158, 2000.
    [32] Z. Xie, J. Yang, X. Huang, and Y. Huang, "Microwave processing and properties of ceramics with different dielectric loss," Journal of the European Ceramic Society, vol. 19, pp. 381-387, 1999.
    [33] D. K. Agrawal, "Microwave processing of ceramics," Current Opinion in Solid State and Materials Science, vol. 3, pp. 480-485, 1998.
    [34] N. K. Budraa, H. W. Jackson, M. Barmatz, W. T. Pike, and J. D. Mai, "Low pressure and low temperature hermetic wafer bonding using microwave heating," in Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE International Conference on, 1999, pp. 490-492.
    [35] H.-S. Noh, K-S. Moon, A. Cannon, P. J. Hesketh, C. P. Wong, "Wafer bonding using microwave heating of parylene intermediate layers," Journal of Micromechanics and Microengineering, vol. 14, p. 625, 2004.
    [36] K. Thompson, Y. B. Gianchandani, J. Booske, and R.F. Cooper, "Direct silicon-silicon bonding by electromagnetic induction heating," Microelectromechanical Systems, Journal of, vol. 11, pp. 285-292, 2002.
    [37] T. L. Alford, T. Tang, D. C. Thompson, S. Bhagat, J.W. Mayer, "Influence of microwave annealing on direct bonded silicon wafers," Thin Solid Films, vol. 516, pp. 2158-2161, 2008.
    [38] K. F. Lei, S. Ahsan, N. Budraa, W. J. Li, and J. D. Mai, "Microwave bonding of polymer-based substrates for potential encapsulated micro/nanofluidic device fabrication," Sensors and Actuators A: Physical, vol. 114, pp. 340-346, 2004.
    [39] R. J. Holmes, C. McDonagh, J. A. D. McLaughlin, S. Mohr, N. J. Goddard, and P. R. Fielden, "Microwave bonding of poly(methylmethacrylate) microfluidic devices using a conductive polymer," Journal of Physics and Chemistry of Solids, vol. 72, pp. 626-629, 2011.
    [40] James B. Kuo aand K.-W. Su, "CMOS VLSI ENGINEERING Silicon-on-Insulator (SOI) " Kluwer Academic Publishers, 1998.
    [41] J. P. Colinge, "Silicon-on-Insulator technology: Materials to VLSI." Kluwer Academic Pubilshers, 1997.
    [42] M. A. Schmidt, "Wafer-to-wafer bonding for microstructure formation," Proceedings of the IEEE, vol. 86, pp. 1575-1585, 1998.
    [43] Z.-J. Jia, Q. Fang, and Z.-L. Fang, "Bonding of Glass Microfluidic Chips at Room Temperatures," Analytical Chemistry, vol. 76, pp. 5597-5602, 2004.
    [44] G. Zhuang, Q. Jin, J. Liu, H. Cong, K. Liu, J. Zhao, M. Yang, and H. Wang, "A low temperature bonding of quartz microfluidic chip for serum lipoproteins analysis," Biomedical Microdevices, vol. 8, pp. 255-261, 2006.
    [45] T. Suni, K Henttinen, A. Lipsanen, J. Dekker, H. Luoto, M. Kulawski, "Wafer Scale Packaging of MEMS by Using Plasma-Activated Wafer Bonding," Journal of The Electrochemical Society, vol. 153, pp. G78-G82, 2006.
    [46] N. Keskitalo, S. Tiensuu, A. Hallén, "Characterization of hydrophobic bonded silicon wafers," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 186, pp. 66-70, 2002.
    [47] T. R. Chung, L. Yang, N. Hosoda, T. Suga, "Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 121, pp. 203-206, 1997.
    [48] T. R. Chung, L. Yang, M. Hosoda, H. Takagi, T. Suga, "Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method," Applied Surface Science, vol. 117–118, pp. 808-812, 1997.
    [49] D. Pasquariello, M. Camacho, K. Hjort, L. Dózsa, B. Szentpáli, "Evaluation of InP-to-silicon heterobonding," Materials Science and Engineering: B, vol. 80, pp. 134-137, 2001.
    [50] V. Lehmann, K Mitani, R Stengl, T Mii, U Gösele, "Bubble-Free Wafer Bonding of GaAs and InP on Silicon in a Microcleanroom," Japanese Journal of Applied Physics Part 2-Letters, vol. 28, pp. L2141-L2143, Dec 1989.
    [51] F. A. Kish, F. M. Steranka, D.C. Defevere, D.A. Vanderwater, K.G Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D.A. Steigerwald, M. G. Craford, V. M. Robbins, "Very High-Efficiency Semiconductor Wafer-Bonded Transparent-Substrate (AlxGa1-X)0.5In0.5P/GaP Light-Emitting-Diodes," Applied Physics Letters, vol. 64, pp. 2839-2841, May 23 1994.
    [52] B. F. Levine, A. R. Hawkins, S. Hiu, B. J. Tseng, C. A. King, L. A. Gruezke, R. W. Johnson, D. R. Zolnowski, J. E. Bowers, "20 Ghz High Performance Planar Si/InGaAs p-i-n Photodetector," Applied Physics Letters, vol. 70, pp. 2449-2451, 1997.
    [53] M. M. R. Howlader, M. G. Kibria, F. Zhang, M. J. Kim, "Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200°C," Talanta, vol. 82, pp. 508-515, 2010.
    [54] J. H. Wang, M. S. Jin, V. H. Ozguz, S. H. Lee, "N-Channel Metal-Oxide-Semiconductor Transistors Fabricated in a Silicon Film Bonded onto Sapphire," Applied Physics Letters, vol. 64, pp. 724-726, Feb 7 1994.
    [55] A. Murai, L. McCarthy, U. Mishra, S.P. DenBaars, C. Kruse, S. Figge, D. Hommel, "Wafer bonding of GaN and ZnSSe for optoelectronic applications," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 43, pp. L1275-L1277, Oct 1 2004.
    [56] Y. Tomita, M. Sugimoto, K. Eda, "Direct bonding of LiNbO3 single crystals for optical waveguides," Applied Physics Letters, vol. 66, pp. 1484-1485, 1995.
    [57] K. Eda, M. Sugimoto, Y. Tomita, "Direct Heterobonding of Lithium Niobate onto Lithium Tantalate," Applied Physics Letters, vol. 66, pp. 827-829, 1995.
    [58] M. Alexe, G. Kastner, D. Hesse, U. Gösele, "Ferroelectric-Semiconductor Heterostructures Obtained By Direct Wafer Bonding," Applied Physics Letters, vol. 70, pp. 3416-3418, Jun 23 1997.
    [59] Q.-Y. Tong, R. Gafiteanu, U. Gösele, "Reversible Silicon Wafer Bonding for Surface Protection: Water-Enhanced Debonding," Journal of The Electrochemical Society, vol. 139, pp. L101-L102, 1992.
    [60] K. Dessein, P. S. Anil Kumar, S. Németh, L. Delaey, G. Borghs, and J. De Boeck, "The vacuum wafer bonding technique as an alternative method for the fabrication of metal/semiconductor heterostructures," Journal of Crystal Growth, vol. 227–228, pp. 906-910, 2001.
    [61] Q.-Y. Tong, G. Cha, R. Gafiteanu, U. Gösele, "Low temperature wafer direct bonding," Microelectromechanical Systems, Journal of, vol. 3, pp. 29-35, 1994.
    [62] C. Ventosa, F. Rieutord, L. Libralesso, C. Morales, F. Fournel, H. Moriceau, "Hydrophilic low-temperature direct wafer bonding," Journal of Applied Physics, vol. 104, p. 123524, 2008.
    [63] C.-X. Wang, T. Suga, "Room-Temperature Direct Bonding Using Fluorine Containing Plasma Activation," Journal of The Electrochemical Society, vol. 158, pp. H525-H529, 2011.
    [64] Q.-Y. Tong and U. Gösele "A Model of Low-Temperature Wafer Bonding And Its Applications," Journal of The Electrochemical Society, vol. 143, pp. 1773-1779, 1996.
    [65] Q.-Y. Tong, E. Schmidt, U. Gösele, M. Reiche, "Hydrophobic silicon wafer bonding," Applied Physics Letters, vol. 64, pp. 625-627, 1994.
    [66] K. Mitani, D. Feijoo, G. Cha, and U. Gösele, "A New Evaluation Method of Silicon-Wafer Bonding Interfaces and Bonding Strength by KOH Etching," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 31, pp. 969-974, Apr 1992.
    [67] B. K. Ju, Y. H. Lee, K. H. Tchah, and M. H. Oh, "On the Anisotropically Etched Bonding Interface of Directly Bonded (100) Silicon Wafer Pairs," Journal of The Electrochemical Society, vol. 142, pp. 547-553, 1995.
    [68] H. Camon and Z. Moktadir, "Simulation of silicon etching with KOH," Microelectronics Journal, vol. 28, pp. 509-517, 1997.
    [69] X. X. Zhang, B. Olbrechts, J-P Raskin, "Oxygen Plasma and Warm Nitric Acid Surface Activation for Low-Temperature Wafer Bonding," Journal of The Electrochemical Society, vol. 153, pp. G1099-G1105, 2006.
    [70] E. P. EerNisse, "Viscous flow of thermal SiO2," Applied Physics Letters, vol. 30, pp. 290-293, 1977.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE