研究生: |
林坰青 |
---|---|
論文名稱: |
利用熱蒸鍍法合成摻雜鋁之氧化鋅奈米結構與特性探討 Synthesis and Properties of Al-doped ZnO Nanostructures by Thermal Evaporation |
指導教授: | 施漢章 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 摻雜鋁氧化鋅 、熱蒸鍍 、陰極激發光 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本工作主要在研究利用熱蒸鍍法蒸鍍鋅粉來合成摻雜鋁的氧化鋅奈米結構並研究其特性,我們分別嘗試了3種不同的方式作為摻雜鋁的來源,分別是在基板上灑佈鋁粉、在基板上濺鍍鋁膜、在鋅粉中添加氯化鋁水溶液,探討不同鋁來源對我們成長氧化鋅的影響並探究是否成功摻雜,本實驗製程在500°C下通入氬氣100 sccm維持氣壓1 Torr合成氧化鋅,升溫速率為每分鐘25°C,到達加熱溫度後始通入氧氣5 sccm,持溫時間為20分鐘。FESEM表面形貌觀察中發現3種不同的氧化鋅奈米結構,由HRTEM觀察中發現氧化鋅晶格常數c為0.5 nm,從Raman光譜分析中可發現本實驗合成之氧化鋅分子振動訊號,陰極激發光譜(Cathodoluminescence spectrum, CL spectrum)顯示出在紫外光範圍皆有很強的訊號,而同時含有黃綠光範圍的訊號之氧化結構則顯示其結構中仍存在有氧空缺的缺陷,藉由化學分析電子儀分析,顯示在灑佈鋁粉基板上所成長的氧化鋅結構是成功摻雜鋁的。
In this work, aluminum-doped zinc oxide (Al-doped ZnO, AZO) nanostructures were synthesized by the thermal evaporation in a CVD process and characterized. We have tested three different methods of utilizing the sources of the aluminum dopant, namely dispersed Al powder, sputtered Al by DC sputter, and mixed with Zn powder and aluminium chloride solution. The influence of different aluminum sources toward the growth of zinc oxide and the effect of doping aluminum was discussed. Thermally reacted temperature was at 500□C in the furnance (at 1 Torr) with gas flow of 100 sccm Ar and 5 sccm O2. The heated rate was 25°C per minute, and heated time was 20 minutes. From FESEM observation, ZnO nanostructures were found three different morphologies. The lattice constance of c-axis is 0.5 nm. Raman spectrum shows the peak of vibration modes of ZnO. Cathodoluminescence spectrum shows the strong intensity of UV emission and a green emission peak resulted from oxygen vancancies. From XPS analysis, the Al-doped ZnO nanostructures was successfully grew on the Al powder-dispersed substrates.
[1] Z. Fan, J.G. Lu , “Zinc Oxide Nanostructures: Synthesis and Properties”, J. Nanosci. Nanotechnol. 5, 1561-1573 (2005)
[2] B. Meyer and Dominik Marx, “Density-functional study of the structure and stability of ZnO surfaces”, Phys. Rev. B 67, 035403 (2003)
[3] W. S. Hu, Z. G. Liu, R. X. Wu, Y. F. Chen, W. Ji, T. Yu, and D. Feng, “Preparation of piezoelectric-coefficient modulated multilayer film ZnO/Al2O3 and its ultrahigh frequency resonance”, Appl. Phys. Lett.71,548 (1997)
[4]施敏,張俊彥, “半導體元件物理與製作技術”, 高立圖書有限公司, 2001 三版
[5] W. I. Park, Y. H. Jun, S. W. Jung, Gyu-Chul Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett. 82, 964 (2003)
[6]曾永寬, “氧化鋅奈米線的合成與特性探討”, 國立清華大學材料科學與工程學系博士論文(2003)
[7] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J.Appl.Phys.79, 7983 (1996)
[8] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, “Controlled growth of ZnO nanowires and their optical properties ”, Adv. Mater. 12, 323 (2002).
[9] I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires”, Phys. Rev. B. 69, 245401 (2004)
[10] Z. L.Wang, X.Y. Kong, J.M. Zuo, “Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces”, Phys. Rev. Lett. 91,502 (2003)
[11]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, “1D nanostructures synthesis characterization and application”, Adv. Mater. 2003,I5 ,No.5
[12]Z.L. Wang, “Self-assembly nanoarchitectures of polar nanobelts nanowires”, J. Mater. Chem. , 15, 1021–1024 | 1021 (2005)
[13] P. X. Gao, W. Mai, and Z. L. Wang, “Superelasticity and Nanofracture Mechanics of ZnO Nanohelices”, Nano. Lett. Vol 6, No.11, 2536-2543 (2006)
[14]M. Kitano, T. Hamabe, S. Maeda, “Growth of large tetrapod-like ZnO crystals II. Morphological considerations on growth mechanism”, J. Cryst. Growth. 108, 277—284 (1991)
[15] Y. Dai, Y. Zhang, Z. L. Wang, “The octa-twin tetraleg ZnO nanostructures”, Solid State Commun. 126 ,629–633 (2003)
[16] Q. Wan, T. H. Wang, J.C.Zhao, “Enhanced photocatalytic activity of ZnO nanotetrapods”, Appl. Phys. Lett. 87,083105 (2005)
[17] Q. Wan, K. Yu, T. H. Wang, C. L. Lin, “Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation”, Appl. Phys. Lett. Vol. 83, No. 11, 15 September (2003)
[18] J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, “ZnO Nanobridges and Nanonails”, Nano. Lett. Vol.3, No.2, 235-238 (2003)
[19] L. Liao, J. C. Li, D. H. Liu, C. Liu, D. F. Wang, and W. Z. Song, Q. Fu, “Self-assembly of aligned ZnO nanoscrews: Growth, configuration, and field emission”, Appl. Phys. Lett. 86, 083106 (2005)
[20] P. X. Gao, Z. L. Wang, “Nanopropeller arrays of zinc oxide”, Appl. Phys. Lett. 84, 15, 2883 (2004)
[21] C. Kim, Y. J. Kim, E. S. Jang, G. C. Yi, H. H. Kim, “Whispering-gallery-modelike-enhanced emission from ZnO nanodisk”, Appl. Phys. Lett. 88, 093104 (2006)
[22] Z. R. Dai, Z. W. Pan, Z. L. Wang, “Novel nanostructure of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater., I3, No.1, January (2003)
[23] F. Li, Y. Ding, P. Gao, X. Xin, Z. L. Wang, “Single-Crystal Hexagonal Disks and Rings of ZnO: Low-Temperature, Large-Scale Synthesis and Growth Mechanism”, Angew. Chem. Int. Ed., 43, 5238 –5242 (2004)
[24] X. Wang, J. Song, Z. L. Wang, “Single-crystal nanocastles of ZnO”, Chem. Phys. Lett. 424, 86–90 (2006)
[25] S. Bethke, H. Pan, B. W. Wessels, “Luminescence of Heteroepitaxial Zinc Oxide”, Appl. Phys. Lett. 52,138 (1998)
[26] 楊明輝, 金屬氧化物透明導電材料的基本原理, 工業材料, 2001年11月
[27] C. L.Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, I. C. Chen, “Well-Aligned, Vertically Al-Doped ZnO Nanowires Synthesized on ZnO:Ga/Glass Templates”, Journal of The Electrochemical Society, 152 (5) G378-G381 (2005)
[28] R.C. Wang, C. P. Liu, J. L. Huang, “Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature”, Appl. Phys. Lett. 88, 023111 (2006)
[29] 王瑞琪, “新穎氧化鋅奈米材料的成長與光電性質”, 國立成功大學材料科學及工程研究所博士論文(2006)
[30] Khan A. Alim, Vladimir A. Fonoberov, M. Shamsa, Alexander A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals”, J. Appl. Phys. 97, 124313 (2005)
[31] H.C. Hsu, C. S. Cheng, C. C. Chang, S. Yang, C. S. Chang, W. F. Hsieh, “Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates”, Nanotechnology 16 297–301 (2005)
[32] B. Li, D. Yu, S. L.Zhang, “Raman spectral study of silicon nanowires”, Phys. Rev. B Vol. 59, No. 3 , 15 Jan ,1999-I
[33] G. W. Cong, W. Q. Peng, H. Y. Wei, X. L. Liu, J. J. Wu, X. X. Han, Q. S. Zhu, Z..G. Wang, Z. Z. Ye, J. G. Lu, L. P. Zhu, H. J. Qian, R. Su, C. H. Hong, J. Zhong, K. Ibrahim, T. D. Hu,“Aluminium doping induced enhancement of p–d coupling in ZnO”, J. Phys.: Condens. Matter 18, 3081–3087 (2006)
[34] Y. M. Chung , C. S. Moon, W. S. Jung, J. G. Han, “The low temperature synthesis of Al doped ZnO films on glass and polymer using pulsed co-magnetron sputtering: H2 effect”, Thin Solid Films 515, 567 – 570 (2006)
[35] http://www.veeco.com/library/elements/images/VaporPress1B_large jpg
[36] D.T.Hawkins and A. Hultgren, Diagrams of Binary Alloys Systems: Metals Handbook, American Society for Metals (ASM)/ASM handbook Committee, pp.265 (1973)