研究生: |
黃采琳 Huang, Cai-Lin |
---|---|
論文名稱: |
基於灰色分析的小數據預測法之研究 —以鋰離子電池電容量為例 Progressive Approach to Small Data Prediction Based on Grey Analysis with a Case of the Capacity of Lithium-Ion Battery |
指導教授: |
王小璠
Wang, Hsiao-Fan 李雨青 Lee, Yu-Ching |
口試委員: |
徐昕煒
Hsu, Hsin-Wei 曹銳勤 Tsaur, Ruey-Chyn |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 小數據預測 、灰色生成 、模糊迴歸 、鋰離子電池 |
外文關鍵詞: | small data prediction, Grey Generation, Fuzzy Regression, Lithium-Ion Battery |
相關次數: | 點閱:38 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數據科學的蓬勃發展使得人們較不需要特定領域的專業知識,便能進行預測與分析。此乃基於大數據的分析可以從海量的數據中發現相關性、以及市場趨勢與客戶偏好,協助組織做出明智的決策。隨著全球競爭激烈,產品生命週期越來越短,快速回應市場需求是取得市場先機的重要因素。然在產品開發初期階段,卻很難收集到足夠的數據進行有效分析。針對上述問題,本研究提出了一種結合灰色生成增加樣本數據和模糊迴歸進行驗證及預測的漸進式系統。為了在時間上充分利用數據,生成的樣本數據將進行相應的校準,此設計不僅提高預測精度,同時也修正一般模糊迴歸模型的區間愈加發散的現象,進而驗證數據愈多,預測愈精準的統計法則,而使本研究的系統的更新區間逐漸收斂至統計迴歸線。基於資料取得與文獻比較的可及性,本研究以鋰離子電池容量衰減預測為例進行說明和評估。
The rapid development of data science has made it possible to make predictions and analyses without the need for specialized knowledge in a specific field. Based on Big Data Analytics, the result can discover correlations, market trends, and customer preferences from large amounts of data to help organizations make decisions. However, due to the fierce global competition and short product life cycle, it is hard to collect sufficient data for performing effective analysis, especially in the early stage of development. To solve the above problems, this study proposes a progressive system that combines Grey Generation to increase sample data and Fuzzy Regression for validation and prediction. To make the best use of data along time, the generated sample data will be calibrated accordingly to increase the prediction accuracy. Based on such design, the proposed system not only overcomes the shortcoming of diverse intervals derived from general fuzzy regression models, but also, from the convergent trend of the updated data, demonstrates that the more data, the more accurate the system becomes, which is consistent with the statistic law. Due to the accessibility and comparability of the data and the related research, a case of the capacity decay prediction of Lithium-Ion Battery is employed for illustration and evaluation.
B. Saha and K. Goebel (2007). Battery Data Set, NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA
Chang, C.-J., Li, D.-C., Chen, C.-C., & Chen, W.-C. (2019). Extrapolation-Based Grey Model for Small-Data-Set Forecasting. Economic Computation and Economic Cybernetics Studies and Research, 53, 171–182. https://doi.org/10.24818/18423264/53.1.19.11
Chang, C.-J., Li, G., Zhang, S.-Q., & Yu, K.-P. (2019). Employing a Fuzzy-Based Grey Modeling Procedure to Forecast China’s Sulfur Dioxide Emissions. International Journal of Environmental Research and Public Health, 16(14), 2504. https://doi.org/10.3390/ijerph16142504
Diamond, P. (1988) Fuzzy Least Squares. Information Sciences, 46, 141-157.https://doi.org/10.1016/0020-0255(88)90047-3
Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Springer US. https://doi.org/10.1007/978-1-4899-4541-9
Gong, H.-F., Chen, Z.-S., Zhu, Q.-X., & He, Y.-L. (2017). A Monte Carlo and PSO Based Virtual Sample Generation Method for Enhancing The Energy Prediction and Energy Optimization On Small Data Problem: An Empirical Study of Petrochemical Industries. Applied Energy, 197, 405–415. https://doi.org/10.1016/j.apenergy.2017.04.007
Guyon, I., Elisseeff, A. (2006). An Introduction to Feature Extraction. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds) Feature Extraction. Studies in Fuzziness and Soft Computing, 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35488-8_1
He, Y.-L., Wang, P.-J., Zhang, M.-Q., Zhu, Q.-X., & Xu, Y. (2018). A Novel and Effective Nonlinear Interpolation Virtual Sample Generation Method for Enhancing Energy Prediction and Analysis on Small Data Problem: A Case Study of Ethylene Industry. Energy, 147, 418–427. https://doi.org/10.1016/j.energy.2018.01.059
Julong, D. (1982). Introduction to Grey System Theory. 24.
Kahraman, C., Beşkese, A., & Bozbura, F. T. (2006). Fuzzy Regression Approaches and Applications. In C. Kahraman (Ed.), Fuzzy Applications in Industrial Engineering (Vol. 201, pp. 589–615). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-33517-X_24
Kang, G., Wu, L., Guan, Y., & Peng, Z. (2019). A Virtual Sample Generation Method Based on Differential Evolution Algorithm for Overall Trend of Small Sample Data: Used for Lithium-ion Battery Capacity Degradation Data. IEEE Access, 7, 123255–123267. https://doi.org/10.1109/ACCESS.2019.2937550
Li, D.-C., Chang, C.-J., Chen, C.-C., & Chen, W.-C. (2012). Forecasting Short-Term Electricity Consumption Using the Adaptive Grey-Based Approach—An Asian Case. Omega, 40(6), 767–773. https://doi.org/10.1016/j.omega.2011.07.007
Li, D.-C., Wu, C.-S., Tsai, T.-I., & Chang, F. M. (2006). Using Mega-Fuzzification And Data Trend Estimation in Small Data Set Learning for Early FMS Scheduling Knowledge. Computers & Operations Research, 33(6), 1857–1869. https://doi.org/10.1016/j.cor.2004.11.022
Li, D.-C., Wu, C.-S., Tsai, T.-I., & Lina, Y.-S. (2007). Using Mega-Trend-Diffusion And Artificial Samples in Small Data Set Learning for Early Flexible Manufacturing System Scheduling Knowledge. Computers & Operations Research, 34(4), 966-982.https://doi.org/10.1016/j.cor.2005.05.019
Liu, S., & Lin, Y. (2006). Grey information: Theory and practical applications. Springer, London
Lu, S.-L. (2019). Integrating Heuristic Time Series with Modified Grey Forecasting for Renewable Energy in Taiwan. Renewable Energy, 133, 1436–1444. https://doi.org/10.1016/j.renene.2018.08.092
Muto, Y., & Hamamoto, Y. (2001). Improvement of The Parzen Classifier in Small Training Sample Size Situations. Intelligent Data Analysis, 5(6), 477–490. https://doi.org/10.3233/IDA-2001-5604
Niyogi, P., Girosi, F., & Poggio, T. (1998). Incorporating Prior Information in Machine Learning by Creating Virtual Examples. Proceedings of the IEEE, 86(11), 2196–2209.https://doi.org/10.1109/5.726787
Shen, Y., & Wei, Y. (2009). The Grey Model Based on Class Ratio Modeling. 2009 Chinese Control and Decision Conference, 2404–2408. https://doi.org/10.1109/CCDC.2009.5192495
Tanaka, H. (1984). Fuzzy Linear Programming Problems with Fuzzy Numbers. Fuzzy Sets and Systems, 13(1), 1-10.
Tsai, C.-F., & Lu, S.-L. (2015). The Exponential Grey Forecasting Model for CO2 Emissions in Taiwan. Grey Systems: Theory and Application, 5(3), 354–366. https://doi.org/10.1108/GS-05-2015-0026
Tsaur, R.-C. (2008). Forecasting Analysis by Using Fuzzy Grey Regression Model for Solving Limited Time Series Data. Soft Computing, 12(11), 1105–1113. https://doi.org/10.1007/s00500-008-0278-z
Wang, H.-F., & Huang, C.-J. (2010). Multi-Dimensional Data Construction Method With Its Application to Learning from Small-Sample-Sets. Intelligent Data Analysis, 14(1), 121–141. https://doi.org/10.3233/IDA-2010-0411
Wang, H.-F., & Tsaur, R.-C. (2000). Resolution of Fuzzy Regression Model. European Journal of Operational Research, 126(3), 637–650. https://doi.org/10.1016/S0377-2217(99)00317-3
Xie, Z., & Quan, B. (2020). Corrosion Analysis and Studies on Prediction Model of 16mn Steel by Grey System Theory. Materials Research Express, 7(10), 106510. https://doi.org/10.1088/2053-1591/abbd07
Zhang, L., Wang, Z., & Zhao, S. (2007). Short-Term Fault Prediction of Mechanical Rotating Parts on The Basis Of Fuzzy-Grey Optimizing Method. Mechanical Systems and Signal Processing, 21(2), 856–865. https://doi.org/10.1016/j.ymssp.2005.09.013
Zhang, M., Kang, G., Wu, L., & Guan, Y. (2022). A Method for Capacity Prediction of Lithium-Ion Batteries Under Small Sample Conditions. Energy, 238, 122094. https://doi.org/10.1016/j.energy.2021.122094
Zhang, X.-H., Xu, Y., He, Y.-L., & Zhu, Q.-X. (2021). Novel Manifold Learning Based Virtual Sample Generation for Optimizing Soft Sensor with Small Data. ISA Transactions, 109, 229–241. https://doi.org/10.1016/j.isatra.2020.10.006
Zhu, Q.-X., Gong, H.-F., Xu, Y., & He, Y.-L. (2017). A Bootstrap Based Virtual Sample Generation Method for Improving the Accuracy of Modeling Complex Chemical Processes Using Small Datasets. 2017 6th Data Driven Control and Learning Systems (DDCLS), 84–88. https://doi.org/10.1109/DDCLS.2017.8068049