研究生: |
蔡弼任 |
---|---|
論文名稱: |
行波式交流電電滲流之抽水能力研究 Liquid-pumping with traveling-wave electro-osmosis |
指導教授: | 李雄略 |
口試委員: |
陳志臣
張錦裕 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 行波式交流電 、電滲流 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討行波式交流電電滲流(Traveling Wave Electro- osmosis Flow)的抽水能力。過去TWEO相關的研究和模擬著重在四周密閉流道內,觀察流體流動的現象,本文研究則為當流道有流體流進、流出時,TWEO抽水的能力,較符合實際的應用。本文引用前人所提出的double layer和擴散層電容比非定值的結論,並基於前人發現TWEO在流體發生逆流時,因為渦流的抵銷導致抽水的效能減弱的原因,本文選定有較好抽水能力,即為normal flow發生時的條件下,計算流道高度、流量和TWEO抽水能力的關係,並建立了新的參數Lsp(self-pumping length)來呈現本文研究的結果,其定義為TWEO在該流量和流道高度下,可以推動流體的距離。
[1] Lintel van HTG, Pol van de FCM, Bouwstra S. A piezoelectric micropump based on micromachining of silicon. Sensors and Actuators. 1988;15 (2): 153-167.
[2] Glockner PS, Naterer GF. Thermocapillary control of microfluidic transport with a stationary cyclic heat source. J. Micromech. Microeng. 2005;15 : 2216–2229
[3] Bown MR, Meinhart CD. AC electroosmotic flow in a DNA concentrators. Microfluid Nanofluid. 2006; 2:513-523
[4] Ramos A, Morgan H, Green NG. AC electric-field-induced fluid flow in microelectrodes. J. Colloid Interface Sci. 1999;217(9): 420-422.
[5] Green NG, Ramos A, Gonzalez A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E. 2000;61(4): 4011-4018.
[6] Gonzalez A, Ramos A, Green NG. Fluid flow induces by nonuniform ac electric fields in electrolytes on microelectrodes. II.A linear double-layer analysis. Phys Rev E . 2000;61(4): 4019-4028.
[7] Green NG, Ramos A, Gronzale A. Fluid flow induces by nonuniform ac electric fields in electrolytes on microelectrodes. III.Observation of streamlines and numerical simulation. Phys Rev E. 2002;66(8):206305.
[8] Ajdari A. Pumping liquids using asymmetric electrode arrays. Phys Rev E. 2000;61(1):R45-R48
[9] Brown ABD, Smith CG, Rennie AR. Pumping of Water with AC Electric Fields Applied to Asymmetric Pairs of Microelectrodes. Phys. Rev. E 2001; 63:016305.
[10] Ramos A, Gonza´lez A, Castellanos A, Green NG, Morgan H. Punping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys Rev E 2003;53(8): 71-87.
[11] Ramos A, Morgan H, Green NG, González A, Castellanos A. Pumping of liquids with traveling-wave electroosmosis. J Appl Phys. 2005;97: 084906.
[12] Garcia-Sanchez P, Ramos A, Green NG, Morgan H. Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. Dielectric Liquids 2006;13: 670 - 677
[13]Loucaides N, Ramos A, Georghiou GE. Novel systems for configurable AC electroosmotic pumping. Microfluid Nanofluid 2007;3:709–714
[14] Yang H, Jiang H, Ramos A, Garcia-Sanchez P. AC electrokinetic pumping on symmetric electrode arrays. Microfluid Nanofluid. 2009;7: 767-72.
[15] Garcia-Sanchez P, Ramos A, Gonza´lez A ,Green NG, Morgan H. Flow Reversal in Traveling-Wave Electrokinetics: An Analysis of Forces Due to Ionic Concentration Gradients. Langmuir. 2009;25(9):4988-97
[16] 吳政昆,交流電電泳流之電極表面擴散層電容比之研究,國立清華大學碩士論文,新竹,台灣,2011.
[17]陳界誠, 交流電電泳流之電極表面擴散層與電雙層之阻抗比研究,國立清華大學碩士論文,新竹,台灣,2012.
[18] Lee SL, Tzong R.Y. Artificial pressure for pressure-linked equation. Int J Heat Mass Transfer. 1992;35:2705-16
[19] Lee SL. A strongly implicit solver for 2-dimensional elliptic differential equations. Numer Heat Transfer. 1989;16:161-78