研究生: |
佘慶威 Sher, Chin Wei |
---|---|
論文名稱: |
液態高演色性量子點螢光粉與可撓式照明之發光元件模組之研究 Study of uniform white light LED source on a flexible substrate applied in wearable device and high performance LQD in glass package device |
指導教授: |
傅建中
Fu, Chien-Chung 郭浩中 Kuo, Hao-chung |
口試委員: |
李柏璁
Lee, Po-Tsung 羅丞曜 Lo, Cheng-Yao 黃乙白 Huang, Yi-Pai |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 發光二極體 、量子點螢光粉 、可撓式模組 |
外文關鍵詞: | flexible LED |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的光源例如:白熾燈是類似點狀的光源,而日光燈管是類似線條狀的光源,近年最熱門的光源發光二極體(LED)是一種非常良好的指向性光源,但是在照明的應用上,面光源的需求是非常大的,近10多年中,受益於顯示器技術的之快速發展與高技術成熟度,促使光學特性上具高度設計彈性、多功能性與高積體整合性等特色之微、奈米光學元件於各類光學系統中應用之重要性已吸引眾多研究與技術開發資源相繼投入。本研究嘗試運用奈米結構及多重光學散射及高效率螢光粉,實現了一個可撓式白光發光二極體元件,此發光二極體光源主要有三個特點:1. 為一均勻的面光源, 2. 可任意彎曲且適合各式穿戴式裝置, 3. 高發光效率,發光效率大於120 lm/w,4. 價格便宜,為OLED價格之1/3,5. 演色性大於95,,第二部份我們針對如何維持高發光效率的量子點發光二極體做研究。一般而言,當量子點螢光粉受熱造成分散劑揮發或受到氧化時,會產生自聚集、波長紅移與螢光共振能量轉移(FRET)現象,造成量子點螢光粉的效率及演色性隨著時間而改變。所以當量子點懸浮於分散劑中,相對而言就降低了自聚集的機率,因此我們將液狀之量子點螢光粉封裝於高透光度石英盒中,以隔絕熱與環境中濕氣與氧氣,使量子點螢光粉可維持最佳發光效率,經過一千小時信賴性測試之後,傳統量子點封裝方式發光效率下降約73%,而利用高透光度石英盒保護量子點螢光粉之封裝方式發光效率僅下降約13%,本研究成功解決傳統量子點封裝無法維持長時間有效發光之缺點,並且可將以種封裝方式應用於顯示器背光光源之中,以提升其發光效率。本研究中之光學驗證平台主要為積分球系統、背光模組量測均勻度系統。此種新穎之發光二極體元件具有很大的潛力應於照明以及生醫領域中。
This study demonstrates the flexible white LED structure with high lumen efficiency and uniform optical performance for neutral white and warm white CCT. Flip-chip LEDs were attached on a polyimide substrate with copper strips as electrical and thermal conduction paths. Yellow phosphors are mixed with polydimenthysiloxane (PDMS) to provide mechanical support and flexibility. The light efficiency of this device can reach 120 lm/W and 85% of light output uniformity of the emission area can be achieved. Moreover, the optical simulation is employed to evaluate various designs of this flexible film in order to obtain uniform output. Both the pitch between the individual devices and the thickness of the phosphor film are calculated for optimization purpose. This flexible white LED with high lumen efficiency and good reliability is suitable for the large area fixture in the general lighting applications. Another study demonstrates a novel package design to store colloidal quantum dots in liquid format and integrate it with standard LED. The high efficiency and high quality color performance for neutral white correlated color temperature can be demonstrated. The experimental results indicate that the LQD white light-emitting diode (LQD WLED) has high color quality and good reliability characteristic. The light efficiency and color rendering index (CRI) of the LQD WLED can reach to 268 lm/Wop and 95 respectively. Moreover, the glass box is employed to prevent from humidity and oxygen. With this encapsulation design, our quantum dot box can survive over 1000 hours of on-self storage time.
References
1. Jean-Marc Bonard, Hannes Kind, Thomas Stöckli, Lars-Ola Nilsson, “Field emission from carbon nanotubes: the first five years,” Solid-State Electronics, Vol.45, pp.893-914 (2001)
2. Po-Chiang Chen, Guozhen Shen, Saowalak Sukcharoenchoke and Chongwu Zhou, “Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films,” Appl. Phys. Lett., Vol. 94, 043113 (2009)
3. Li Yukui, Zhu Changchun, and Liu Xinghui, “Field emission display with carbon nanotubes cathode: prepared by a screen-printing process,” Diamond and Related Materials, Vol.11, pp.1845-1847 (2002)
4. W. B. Choi and et al., “The First 9-inch Carbon-Nanotube Based Field-Emission Displays for Large Area and Color Applications,” SID Symposium Digest of Technical Papers, Vol.31, pp.324-327 (2000)
5. P.D. Rock, A. Naman, P.H. Holloway, Sey Shing Sun, and R.T. Tuenge, "Materials Used in Electroluminescent Displays," http://www.distec.com/Electro.htm, accessed on July 13 (1999)
6. Ron Khormaei and et al., "High Resolution Active Matrix Electroluminescent Display", Society for Information Display Digest, pp. 137 (1994)
7. The publication of his observations was in Henry J. Round, "A Note on Carborundum," Electrical World, Vol. 19, pp.309 (1907)
8. Vijay P. Singh, Srinivas Krishna and David C. Morton, “Electric field and conduction current in ac thin‐film electroluminescent display devices,” J. Appl. Phys. 70, pp.1811 (1991)
9. Brody T.P., Fang Chen Luo, Szepesi Z.P., and Davies D.H., “A 6 × 6-in 20-lpi electroluminescent display panel,” Electron Devices IEEE, Vol.22, pp.739 - 748 (1975)
10. Wai Lek Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao & K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,“ Nature, Vol. 410, pp.192-194 (2001)
11. Atsushi Tsukazaki and et al., “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,“ Nature Materials 4, pp.42 - 46 (2005)
12. Russell D. Dupuis and Michael R. Krames, “History, Development, and Applications of High-Brightness Visible Light-Emitting Diodes,” Journal of Lightwave Technology, Vol. 26, pp. 1154-1171 (2008)
13. Mueller-Mach Regina, Mueller Gerd O., Krames M.R., and Trottier T., “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” Selected Topics in Quantum Electronics, Vol.8, pp.339-345 (2002)
14. Youngkyoo Kim and et al., “Hole-transporting polyimide for organic electroluminescent display,” Thin Solid Films, Vol.363, pp. 263-267(2000)
15. Junji Kido, Masato Kimura, and Katsutoshi Nagai, “Multilayer White Light-Emitting Organic Electroluminescent Device,” Science, Vol.267, pp. 1332-1334 (1995)
16. Tatsuya Sasaoka and et al., “A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC),” SID Symposium Digest of Technical Papers, Vol. 32, pp.284-387 (2001)
17. Mizukami M. and et al., “Flexible AM OLED panel driven by bottom-contact OTFTs,“ Electron Device Letters, Vol.27, pp.249-251 (2006)
18. Sugimoto A. and et al., “Flexible OLED displays using plastic substrates,” Selected Topics in Quantum Electronics, Vol.10, pp.107-114 (2004)
19. Hsin Her Yu, Shug-June Hwang, and Kuo-Cheng Hwang, “Preparation and characterization of a novel flexible substrate for OLED,” Optics Communications, Vol.248, pp.51-57 (2005)
20. C. H. Lin, R. H. Chiang, M. L. He, C. W. Chen, “Extraordinarily wide-view and wide spectral bandwidth transflective liquid-crystal displays,” Optics Express, Vol. 18, pp.4601-4608 (2010)
21. Hiroyuki Mori, “The Wide View (WV) Film for Enhancing the Field of View of LCDs,” Journal of Display Technology, Vol. 1, pp.179- (2005)
22. Zhibing Ge and et al., “Wide-View and Broadband Circular Polarizers for Transflective Liquid Crystal Displays,” Journal of Display Technology, Vol. 4, pp.129-138 (2008)
23. H. C. Cheng, Ben-David Ilan,S. T. Wu, “Five-Primary-Color LCDs,” Journal of Display Technology, Vol. 6, pp.3-7 (2010)
24. Y. M. Lee, and et al., “Refractive Index and Effective Thickness Measurement System for the RGB Color Filter Coatings With Absorption and Scattering Properties,” Journal of Display Technology, Vol. 10, pp.57-70 (2014)
25. U. Happek, S. Okamoto, A. A. Setlur, “Phosphors for New-Generation Lighting,” The Electrochemical Society (2009)
26. F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. Shieh, “Color Filter-Less LCDs in Achieving High Contrast and Low Power Consumption by Stencil Field-Sequential-Color Method,” Journal of Display Technology, Vol. 6, pp.98-106 (2010)
27. Z. Y. Luo, Y. W. Chen, and S. T. Wu, “Wide color gamut LCD with a quantum dot backlight,” Optics Express, Vol. 21, pp.26269-26284 (2013)
28. C. C. Chen, C. M. Tsai, and Y. C. Fang, “Optical Design of LCOS Optical Engine and Optimization With Genetic Algorithm,” Journal of Display Technology, Vol. 5, pp.293-305 (2009)
29. P. H. Yao, C. H. Chen, and C. H. Chen, “Low speckle laser illuminated projection system with a vibrating diffractive beam shaper,” Optics Express, Vol. 20, pp.16552-16566 (2012)
30. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness ingan/algan double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687-1689 (1994).
31. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat Photon 3(4), 180-182 (2009).
32. E. F. Schubert, and J. K. Kim, "Solid-State Light Sources Getting Smart," Science 308(5726), 1274-1278 (2005).
33. D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, “Novel integrated light-guide plates for liquid crystal display backlight,” Journal of Optics A: Pure and Applied Optics 7(3), 111 (2005).
34. P.H. Huang, T.C. Huang, Y.T. Sun, and S.Y. Yang, “Large-area and thin light guide plates fabricatedusing UV-based imprinting,” Opt. Express 16(19), 15033-15038 (2008).
35. R.H. Kim, D.H. Kim, J. Xiao, B. H. Kim, S.I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat Mater 9(11), 929-937 (2010).
36. J. Yoon, S. Jo, I. S. Chun, I. Jung, H.S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329-333 (2010).
37. H.s. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting,” Proceedings of the National Academy of Sciences 108(25), 10072-10077 (2011).
38. S. Y. Lee, K.I. Park, C. Huh, M. Koo, H. G. Yoo, S. Kim, C. S. Ah, G. Y. Sung, and K. J. Lee, “Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications,” Nano Energy 1(1), 145-151 (2012).
39. S. Kun. Ching, L. Wen. Yu, W. Dong. Sing, H. Shih. Yung, W. Kuo. Sheng, P. Shih. Feng, W. Liang. Wen, and R. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” Electron Device Letters, IEEE 34(2), 274-276 (2013).
40. M. R. Krames, O. B. Shchekin, R. Mueller. Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” Display Technology, Journal of 3(2), 160-175 (2007).
41. K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih, C. H. Tsai, H. H. Shih, and H. C. Kuo, “Light-Emitting Devices: Resonant-Enhanced Full-Color Emission of Quantum-Dot-Based Display Technology Using a Pulsed Spray Method (Adv. Funct. Mater. 24/2012),” Advanced Functional Materials 22(24), 5137-5137 (2012).
42. P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao and W. W. Yu, Nanoscale, 2013, 5, 10481-10486
43. H. S. Jang, H. Yang, S. W. Kim, J. Y. Han, S.-G. Lee and D. Y. Jeon, Advanced Materials, 2008, 20, 2696-2702.
44. K. Xue, G. Han, Y. Duan, P. Chen, Y. Yang, D. Yang, Y. Duan, X. Wang, and Y. Zhao, “Doping-free orange and white phosphorescent organic light-emitting diodes with ultra-simply structure and excellent color stability,” Organic Electronics 18(0), 84-88 (2015).
45. L. Chih Lung, and C. Yung Chih, “A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED,” Electron Device Letters, IEEE 28(2), 129-131 (2007).
46. R. H. Horng, H. L. Hu, R. C. Lin, L. S. Tang, C. P. Hsu, and S. L. Ou, “Cup-shaped copper heat spreader in multi-chip high-power LEDs application,” Opt. Express 20(S5), A597-A605 (2012).
47. S.Y. Wen, H.L. Hu, Y.J. Tsai, C.P. Hsu, R.C. Lin, and R. H. Horng, “A novel integrated structure of thin film GaN LED with ultra-low thermal resistance,” Opt. Express 22, A601-A606 (2014).
48. K.J. Chen, H.C. Chen, C.C. Lin, C.H. Wang, C.C. Yeh, H.H. Tsai, S.H. Chien, M.H. Shih, and H.C. Kuo, “An Investigation of the Optical Analysis in WhiteLight-Emitting Diodes With Conformal and Remote Phosphor Structure,” J. Display Technol. 9(11), 915-920 (2013).
49. S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40(9), 1427-1437 (2001).
50. J. C. Su and T. M. Lin, “Polarized white light emitting diodes with a nano-wire grid polarizer, Optics Express, Vol. 21, pp.840-845 (2013)
51. J. K. Lee and et al., “Optically bifacial thin-film wire-grid polarizers with nano-patterns of a graded metal-dielectric composite layer,“Optics Express, Vol. 16, pp.16867-16876 (2008)
52. P. H. Yao, C. J. Chung, C. L. Wu, and C. H. Chen, “Polarized backlight with constrained angular divergence for enhancement of light extraction efficiency from wire grid polarizer,” Optics Express, Vol. 20, pp.4819-4829 (2012)
53. Vena Carlo and et al., “Light depolarization effects during the Fréedericksz transition in nematic liquid crystals,” Optics Express, Vol. 15, pp.17063-17071 (2007)
54. J. H. Oh, S. J. Yang, and Y. R. Do, “Polarized white light from LEDs using remote-phosphor layer sandwiched between reflective polarizer and light-recycling dichroic filter,” Optics Express, Vol. 21, pp. A765-A773 (2013)
55. Ruibo Lu,Qi Hong, Z. b. Ge, and S. T. Wu, “Color shift reduction of a multi-domain IPS-LCD using RGB-LED backlight,” Optics Express, Vol. 14, pp.6243-6252 (2006)
56. C. G. Son and et al., “Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs,” Journal of the Optical Society of Korea, Vol. 15, pp.272-277 (2011)
57. Y. J. Wang, J. G. Lu, and H. P. D. Shieh, “A novel highly collimating backlight module using a double wedge-shaped light guide plate,” SID 2102 Digest, pp.1305-1308 (2012)
58. H. K. Jin, “A Color-Filterless LCD with RGB LED and Lenticular-Lens Arrays,” Journal of Information Display, Vol. 11, pp.45-48 (2010)
59. F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color Filter-Less LCDs in Achieving High Contrast and Low Power Consumption by Stencil Field-Sequential-Color Method,” Journal of Display Technology, Vol. 6, pp.98-106 (2010)
60. F. C. Lin, Y. Zhang, and Erno H A Langendijk, “Color Breakup Suppression by Local Primary Desaturation in Field-Sequential Color LCDs,” Journal of Display Technology, Vol. 7, pp.55-61 (2011)
61. W. H. Steel, “Luminosity, Throughput, or Etendue? Further Comments,” Applied Optics, Vol. 14, pp.252-252 (1975)
62. M. S. Brennesholtz and E. H. Stupp, “ Projection displays,” Wiley 2nd edition, Chapter 11, 271-281.
63. J. W. Goodman, “Speckle phenomena in optics: Theory and applications,” Roberts & Company (2006).
64. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145-1150 (1976).
65. A. Furukawa et al., “Effective speckle reduction in laser projection displays”, Proc. SPIE 6911, 1-7 (2008).
66. G. M. J. Craggs et al., “Low-speckle laser projection using farfield nonmodal emission of a broad-area vertical-cavity durface-emitting laser,” Proc. SPIE 7720, 1-8 (2010).
67. M. N. Akram, V. Kartashov, and Z. M. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35, 444-446 (2010).
68. T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,“ Proc. IEEE 84, 765-781 (1996).
69. L. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection system by diffractive optical elements,” Appl. Opt. 37, 1770-1775 (1998).
70. L. L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39(6), 1659-1664 (2000).
71. M. N. Akram, Z. M. Tong, G. M. Ouyang, X. Y. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49, 3297-3304 (2010).
72. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66, 1290-1294 (1976).
73. G. Ouyang, Z. M. Tong, M. N. Akram, K. V. Wang, V. Kartashov, Xin Yan, and X. Y. Chen, “Speckle reduction using a motionless diffractive optical element, “ Opt. Letts. 35, 2852-2854 (2010).
74. L. Golan and S. Shoham, “ Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17, 1330-1339 (2009)
75. P. C. Chen, C. C. Chen, P. H. Yao and C. H. Chen, “Double side lenslet array for illumination optics of laser projector,” Proc. SPIE 7232, 1-9 (2009).
76. S Zhang, “A simple bi-convex refractive laser beam shaper,” J. Opt. A9, 945-950 (2007).
77. F.Wippermann, Uwe-D. Zeitner, P.Dannberg, A.Bräuer, and S.Sinzinger, “Beam homogenizers based on chirped microlens array,” Opt. Express15, 6218-6231 (2007).
78. C.Dorrer and J. D. Zuegel, “Design and analysis of binary beam shapers using error diffusion,” J. Opt. Soc. Am. B24, 1268-1275 (2007).
79. Tasso R. M. Sales, Geoffrey Gretton, G. Michael Morris, and Daniel H. Raguin, “Beam shaping and homogenization with random microlens arrays,” OSA/DOMO 2002, 8-10 (2002).
80. G. Park, Y. Gyu Kim, J. H. Yi, and J. H. Kwon, “Enhancement of the optical performance by optimization of optical sheets in direct-illumination LCD backlight,” J. Opt. Soc. of Korea 13, 152-157 (2009).
81. Z. B. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,”Appl. Phys. Letts. 93, 121104-1 (2008).
82. T. Sergan, M. Lavrentovich, and J. Kelly, “Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers,” J. Opt. Soc. Am. A. 19, 1872-1885 (2002).
83. J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu,F. Walters, and X. G Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Letts. 89, 141105-1 (2006).
84. P. C. Chen and H. L. Kuo, “Color shift improvement in a broadband cholesteric liquid crystal polarizer through computational simulations,” Proc. of SPIE 7050, 705015-1 (2008).
85. L. Li, J. F. Li, B. S. Fan, Y. Q. Jiang, and S. M. Faris, “Reflective cholesteric liquid crystal polarizers and their applications,” Proc. SPIE 3560, 33-40 (1998).
86. Y. Iwamoto and Y. Iimura, “Transmitted light enhancement of electric-field-controlled multidomain vertically aligned liquid crystal displays using circular polarizers and a cholesteric liquid crystal film,”J. J. Appl. Phys. 42, L51-L53 (2003).
87. X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407-4412(2003).
88. M. Xu, H.P. Urbach, D.K.G de Boer, and H.J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303-2320 (2005).
89. S. H. Baik, S. K. Hwang, Y. G. Kim, G. Park, and J. H. Kwon, “Simulation and fabrication of the cone sheet for LCD backlight application,” J. Opt. Soc. of Korea 13, 473-483 (2009).
90. C. F. Lin, Y. B. Fang, and P. H. Yang, “Optimized micro-prism diffusion film for slim-type bottom-lit backlight units,” J. Disp. Tech. 7, 3-9 (2011).
91. J. W. Lee, S. C. Meissner, and R. J. Sudol, “Optical film to enhance cosmetic appearance and brightness in liquid crystal displays,” Opt. Express 15, 8609-8618 (2007).
92. J. H. Lee, H. S. Lee, B. K. Lee, W. S. Choi, H. Y. Choi, and J. B. Yoon, “Simple liquid crystal display backlight unit comprising only a single-sheet micropatterned polydimethylsiloxane (PDMS) light-guide plate,” Opt. Letts. 32, 2665-2667 (2007).
93. S. Aoyama, A. Funamoto, and K. Imanaka, “Hybrid normal-reverse prism coupler for light-emitting diode backlight systems,” Appl. Opt. 45, 7273-7278 (2006).
94. K. Käläntär, “A directional backlight with narrow angular luminance distribution for widening viewing angle of a LCD with a front-surface-light-scattering film,” SID 11 Digest, 890-893 (2011).
95. Born and Wolf, “Principles of optics,” Pergamon, Oxford 4th, 100 (1970).
96. V. C. Ballenegger and T. A. Weber, “The Ewald–Oseen extinction theorem and extinction lengths,” Am. J. Phys. 67, 599-605 (1999).
97. K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, “ Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology,” Opt. Letts. 36, 2665-2667 (2011).
98. T. Jun and A. Masao, "Fabrication of a seamless roll mold by direct writing with an electron beam on a rotating cylindrical substrate," J. Vacuum Science & Technology B 27, 2841-2845 (2009).
99. J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids, “ Appl. Phys. Letts. 90, 061104 - 061104-3 (2007).
100. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography, “ Nanotechnology 16, 1874-1877 (2005).
101. M. Moharam and T. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105-1112 (1983).
102. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).
103. M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Chap.14, pp. 705-708.
104. Song Peng and G. Michael Morris, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings, “J. Opt. Soc. Am. A 12, 1087-1096 (1995)
105. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions, ” Opt. Express 15, 9510-9519 (2007)
106. X. P. Yang, Y. B. Yan and G. F. Jin, “Polarized light-guide plate for liquid crystal display, “Opt. Express 13, 8349-8356 (2005)
107. L. Chen, J. J. Wang, F. Walters, X. G. Deng, M. Buonanno, S. Tai, and X. M. Liu, “58 nm half-pitch plastic wire-grid polarizer by nanoimprint lithography, “J. Vac. Sci. Technol. B 25, 2654-2657 (2007)
108. L. Zhang, C. F. Li, J. Lia, F. Zhang, L. Shi, “Design and fabrication of metal-wire nanograting used as polarizing beam splitter in optical telecommunication, “J. Optoelectronic and Advanced Materials 8, 847 – 850 (2006)
109. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes, ” Phys. Rev. B 58, 6779-6782 (1998)
110. Anni Lehmuskero, Benfeng Bai, Pasi Vahimaa, and Markku Kuittinen, “Wire-grid polarizers in the volume plasmon region, “ Opt. Express 17, 5481-5489 (2009)
111. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “ Surface plasmon resonance effect in grating diffraction, “ Phys. Rev. Letts. 21, 1530-1533 (1968)
112. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawendi, J. Am. Chem. Soc. 2000, 122, 12142.