簡易檢索 / 詳目顯示

研究生: 黃傳原
Huang, Chuan-Yuan
論文名稱: OSTBC-OFDM系統之半盲蔽最大似然偵測:完美通道鑑別和完全空間多樣
Semiblind ML Detection of OSTBC-OFDM : Perfect Channel Identifiability and Full Spatial Diversity
指導教授: 祁忠勇
Chi, Chong-Yung
張縱輝
Chang, Tsung-Hui
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 47
中文關鍵詞: 正交空時區塊碼正交分頻多工最大似然檢測半盲蔽檢測唯一通道鑑別
外文關鍵詞: OSTBC-OFDM, Maximum-likelihood detection, Semiblind detection, Unique channel identifiability
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文考量只須使用一個正交空時區塊碼正交分頻多工(orthogonal space-time block coded orthogonal frequency division multiplexing, OSTBC-OFDM)區塊信號之半盲蔽最大似然檢測(semiblind maximum-likelihood (ML) detection)技術。張等人[5]已證明了一個有趣的通道鑑別(channel identifiability)結果,那結果是,在無雜訊的情況下只須讓一個子通道傳輸前導資料(pilot data),整個時域通道就能被唯一的鑑別。但是,這個結果必須在通道的數學統計上做一些假設。本論文藉由使用所謂的子空間無交集碼(nonintersecting subspace codes)和一些前導資料,建立一個「完美之通道鑑別」(perfect channel identifiability, PCI)傳輸機制,我們證明在這個機制下通道總是能被唯一的鑑別。此完美之通道鑑別傳輸機制雖然比張等人[5]的研究提出的機制所使用前導資料的數量還要多,但是卻比最小平方通道估計演算法還要少。此外,我們分析證明在獨立瑞立衰減通道(Rayleigh fading channels)中,使用此完美之通道鑑別傳輸機制的半盲蔽最大似然檢測器能夠獲得和相干最大似然接收機(coherent ML receiver)相同的完全空間多樣(full spatial diversity)。對於接收機實現問題,我們也提出降底複雜度的子通道群組(subchannel grouping)檢測機制。考量到最近令人感興趣的分散式空時編碼(distributed space- time coding)技術,本論文也將我們提出的完美之通道鑑別傳輸機制和半盲蔽最大似然檢測器延伸到分散式OSTBC-OFDM系統。透過電腦模擬也證實我們提出的機制不管在點對點(point-to-point)的或分散式的OSTBC-OFDM系統都比一些現存的方法提供了更好的效能。


    This thesis considers semiblind maximum-likelihood (ML) detection of orthogonal space-time block coded OFDM (OSTBC-OFDM) systems within one OSTBC-OFDM block. Chang et al. [5] have shown an interesting channel identifiability result, that the whole time-domain multiple-input multiple-output (MIMO) channel can be uniquely identified in the noise-free situation by only using one of the subchannels to transmit pilots. However, this identifiability condition is in a probability-one sense relying on some mild assumptions on the channel statistics. In this thesis, through judicious use of so-called non-intersecting subspace OSTBCs and pilots over a small amount of subchannels, we establish a “perfect” channel identifiability (PCI) condition under which the channel is uniquely identifiable. The proposed scheme has the total number of pilots larger than that used in the previous probability-one identifiability achieving scheme, but smaller than that required in conventional pilot-aided channel estimation schemes. Also, it is shown that, in additive Gaussian noise and independent and identically distributed Rayleigh fading channels, the semiblind ML detector using the proposed PCI achieving scheme can achieve the same full spatial diversity as the coherent ML receiver. For the application in distributed (cooperative) space-time coding systems, we also extend the semiblind ML detector and the proposed PCI achieving scheme to that for a distributed OSTBC-OFDM scenario. Simulation results are presented to show that the proposed scheme can provide better performance than some existing schemes in both point-to-point and distributed OSTBC-OFDM systems.

    CHINESE ABSTRACT ..........................................i ABSTRACT ................................................iii CHINESE ACKNOWLEDGMENTS ..................................iv CONTENTS ..................................................v 1 INTRODUCTION ............................................1 2 SIGNAL MODEL AND BACKGROUND .............................6 2.1 OSTBC-OFDM Signal Model and Semiblind ML Detection ....6 2.2 Unique Channel Identification Conditions ..............9 3 PROPOSED PCI ACHIEVING SCHEME AND DIVERSITY ANALYSIS ...12 3.1 Proposed PCI Achieving Scheme ........................13 3.2 Diversity Analysis of Proposed PCI Achieving Scheme ..16 3.3 Simulation Results ...................................19 4 EXTENSION TO DISTRIBUTED OSTBC-OFDM SYSTEMS ............27 4.1 Signal Model and Semiblind ML Detection ..............28 4.2 Perfect Channel Identifiability and Diversity Analysis ............................30 4.3 Simulation Results ...................................31 5 CONCLUSIONS ............................................36 6 APPENDIX ...............................................37 6.1 Proof of Theorem 2 ...................................37 6.2 Proof of Lemma 2 .....................................39 6.3 Proof of Theorem 4 ...................................39

    [1] E. G. Larsson and P. Stoica, Space-Time Block Coding forWireless Communications.
    Cambridge UK: Cambridge University Press, 2003.
    [2] H. E. Gamal, D. Aktas, and M. O. Damen, “Noncoherent space-time coding: An
    algebraic perspective,” IEEE Trans. Inform. Theory, vol. 51, no. 7, pp. 2380–2390,
    July 2005.
    [3] S. Zhou, B. Muquet, and G. B. Giannakis, “Subspace-based (semi-) blind chan- nel
    estimation for block precoded space-time OFDM,” IEEE Trans. Signal Process., vol.
    50, no. 2, pp. 1215–1228, May 2002.
    [4] Y. Zeng, W. H. Lam, and T. S. Ng, “Semiblind channel estimation and equalization
    for MIMO space-time coded OFDM,” IEEE Trans. Circuits and Systems-I, vol. 53,
    no. 2, pp. 463–474, Feb. 2006.
    [5] T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Maximum-likelihood detection of orthogo-
    nal space-time block coded OFDM in unknown block fading channels,” IEEE Trans.
    Signal Process., vol. 56, no. 4, pp. 1637–1649, April 2008.
    [6] W.-K. Ma, B.-N. Vo, T. N. Davidson, and P.-C. Ching, “Blind ML detection of
    orthogonal space-time block codes: Efficient high-performance implementations,”
    IEEE Trans. Signal Process., vol. 54, no. 2, pp. 738–751, Feb. 2006.
    [7] Z. Wu, J. He, and G. Gu, “Design for optimal pilot-tones for channel estimation in
    MIMO-OFDM systems,” in Proc. IEEE Wireless Commun. and Networking Conf.,
    vol. 1, New Orleans, LA, Sept. 23–26, 2005, pp. 12–17.
    [8] D. M. Terad and R. P. T. Jimenez, “Channel estimation for STBC-OFDM systems,”
    in Proc. IEEE Workshop Signal Process. Advances in Wireless Commun., Lisbon,
    Portugal, July 11–14, 2004, pp. 283–287.
    44
    [9] W. Su, Z. Safar, M. Olfat, and K. J. R. Liu, “Obtaining full-diversity space-frequency
    codes from space-time codes via mapping,” IEEE Trans. Signal Process., vol. 51, no.
    11, pp. 2905–2916, Nov. 2003.
    [10] A. K. Sadek, W. Su, and K. J. R. Liu, “Diversity analysis for frequency-selective
    MIMO-OFDM systems with general spatial and temporal correlation model,” IEEE
    Trans. Commun., vol. 54, no. 5, pp. 878–888, May 2006.
    [11] E. Akay and E. Ayanoglu, “Achieving full frequency and space diversity in wireless
    systems vis BICM, OFDM, STBC and Viterbi decoding,” IEEE Trans. Commun.,
    vol. 54, no. 12, pp. 2164–2172, Dec. 2006.
    [12] A. Scaglione and Y.-W. Hong, “Opportunistic large arrays: Cooperative transmission
    in wireless multihop adhoc networks to reach far distances,” IEEE Trans. Signal
    Process., vol. 51, no. 8, pp. 2082–2092, Aug. 2003.
    [13] T. Wang, Y. Yao, and G. B. Giannakis, “Non-coherent distributed space-time
    processing for multiuser cooperative transmissions,” IEEE Trans.Wireless Commun.,
    vol. 5, no. 12, pp. 3339–3343, Dec. 2006.
    [14] P. A. Anghel, G. Leus, and M. Kaveh, “Distributed space-time cooperative systems
    with regenerative relays,” IEEE Trans. Wireless Commun., vol. 5, no. 11, pp. 3130–
    3141, Nov. 2006.
    [15] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols for ex-
    ploiting cooperative diversity in wireless networks,” IEEE Trans. Inform. Theory,
    vol. 49, no. 10, pp. 2415–2525, Oct. 2003.
    [16] H. Mheidat and M. Uysal, “Distributed space-time block coded OFDM for relay-
    assisted transmission,” in Proc. IEEE ICC, Istanbul, Turkey, 11–15 June, 2006, pp.
    4513–4519.
    [17] Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay networks,”
    IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3534–3536, Dec. 2006.
    [18] S. Yiu, R. Schober, and L. Lampe, “Distributed space-time block coding,” IEEE
    Trans. Commun., vol. 54, no. 7, pp. 1195–1206, July 2006.
    [19] B. Sirkeci-Mergen and A. Scaglione, “Randomized space-time coding for distributed
    cooperative communication,” IEEE Trans. Signal Process., vol. 55, no. 10, pp. 5003–
    5017, Oct. 2007.
    45
    [20] T.-H. Chang, W.-K. Ma, C.-Y. Kuo, and C.-Y. Chi, “Blind maximum-likelihood
    detection for decode-and-forward randomized distributed OSTBC,” in Proc. IEEE
    SPAWC, Perugia, Italy, June 21–24, 2009, pp. 2713–2716.
    [21] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from
    orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456–1467,
    July 1999.
    [22] Z. Liu, Y. Xin, and G. B. Giannakis, “Space-time-frequency coded OFDM over
    frequency-selective fading channels,” IEEE Trans. Signal Process., vol. 50, no. 10,
    pp. 2465–2476, Oct. 2002.
    [23] N. Sarmadi, S. Shahbazpanahi, and A. B. Gershman, “Diversity and channel esti-
    mation errors,” IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2354–2364, June
    2009.
    [24] S. Shahbazpanahi, A. Gershman, and J. Manton, “Closed-form blind MIMO channel
    estimation for orthogonal space-time block codes,” IEEE Trans. Signal Process., vol.
    53, no. 12, pp. 4506–4517, Dec. 2005.
    [25] J. Via and I. Santamaria, “On the blind identifiability of orthogonal space-time block
    codes from second order statistics,” IEEE Trans. Inform. Theory, vol. 54, no. 2, pp.
    709–722, Feb. 2008.
    [26] L. Zhou, J.-K. Zhang, and K.-M. Wong, “A novel signaling scheme for blind unique
    identification of Alamouti space-time block-coded channel,” IEEE Trans. Signal
    Process., vol. 55, no. 6, pp. 2570–2582, June 2007.
    [27] J.-K. Zhang and W.-K. Ma, “Full diversity blind Alamouti space-time block codes
    for unique identification of flat fading channels,” IEEE Trans. Signal Process., vol.
    57, no. 2, pp. 635–644, Feb. 2009.
    [28] W.-K. Ma, “Blind ML detection of orthogonal space-time block codes: Identifiability
    and code construction,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3312–3324,
    July 2007.
    [29] S.M. Alamouti, “A simple transmit diversity technique for wireless communications,”
    IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
    [30] E. G. Larsson, “Diversity and channel estimation errors,” IEEE Trans. Commun.,
    vol. 52, no. 2, pp. 205–208, Feb. 2004.
    46
    [31] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform. Theory,
    vol. 46, no. 7, pp. 2567–2578, Nov. 2000.
    [32] B. Hochwald and T. Marzetta, “Unitary space-time modulation for multiple-antenna
    communications in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 46, no.
    2, pp. 543–564, March 2000.
    [33] T.-H. Chang, W.-K. Ma, C.-Y. Huang, and C.-Y. Chi, “On perfect channel identifi-
    ability of semiblind ML detection of orthogonal space-time block coded OFDM,” in
    Proc. IEEE ICASSP, Taipei, Taiwan, April 19–24, 2009, pp. 2713–2716.
    [34] E. G. Larsson, P. Stoica, and J. Li, “Orthogonal space-time block codes: Maximum
    likelihood detection for unknown channels and unstructured interferences,” IEEE
    Trans. Signal Process., vol. 51, no. 2, pp. 362–372, Feb. 2003.
    [35] S. N. Diggavi, N. Al-Dhahir, A. Stamoulis, and A. R. Calderbank, “Differential space-
    time coding for frequency-selective channels,” IEEE Commun. Lett., vol. 6, no. 6,
    pp. 253–255, June 2002.
    [36] R. Horn and C. Johnson, Matrix Analysis. Cambridge U.K.: Cambridge University
    Press, 1990.
    [37] E. Biglieri, G. Caire, G. Taricco, and J. Ventura-Traveset, “Computing error proba-
    bilities over fading channels: A unified approach,” Eur. Trans. Telecommun., vol. 9,
    pp. 15–25, Jan. 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE