簡易檢索 / 詳目顯示

研究生: 楊靜茹
Yang, Ching-Ju
論文名稱: 以電位記憶效應提升二氧化鈦被覆碳鋼之防蝕能力研究
Corrosion Mitigation Enhancement on TiO2 Coated Carbon Steels by Prolonged Memory Effect in Low Potential
指導教授: 葉宗洸
Yeh, Tsung-Kuang
口試委員: 歐陽汎怡
Ouyang, Fan-Yi
王美雅
Wang, Mei-Ya
黃俊源
Huang, Jiunn-Yuan
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 二氧化鈦被覆碳鋼電化學分析腐蝕
外文關鍵詞: TiO2, coating, carbon steel, electrochemical analysis, corrosion
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 沃斯田鐵系的304不鏽鋼和碳鋼常被用來做為核能組件和管線的材料,也是用過核廢料乾式貯存桶的重要材料之一,但由於不鏽鋼和碳鋼相比,成本較高,而且不鏽鋼在含有氯離子的環境之下,可能產生應力腐蝕龜裂,因此本實驗嘗試使用具有良好機械性質且較便宜的碳鋼做為實驗材料,碳鋼和不鏽鋼相比有容易腐蝕的缺點,因此碳鋼的防蝕保護是不能被忽略的。
    本實驗利用溶膠-凝膠法(sol-gel method)製備二氧化鈦,將所配製的膠體被覆在碳鋼基材上,並結合照射UV光源做為防蝕保護的方法,經照光後會產生電子電洞對,而使基材於環境中處於相對較負的電位,達到類似陰極防蝕的效果。然而,利用這樣的防蝕技術在紫外光源消失之後,電子電洞對會快速再結合,而使電位快速回復至原先較高的值,而使防蝕保護的效果較不佳,因此本實驗希望可以藉由調整不同的實驗參數,使氧化鐵與二氧化鈦之間產生交互作用,而出現電位記憶效應,使紫外光源消失後,電子不易快速再結合,而出現電位緩慢回復的情形。本實驗利用量測開路電位(Open circuit potential)以及極化掃描(Polarization analysis)分析在照光前後碳鋼的腐蝕情形,根據實驗結果發現在適當的熱處理溫度下,可以有較少的鐵離子擴散情形,而可以有較好的光催化效果。此外,亦嘗試增加摻雜層(doping layer)於氧化鐵與二氧化鈦層間,發現藉由摻雜層出現電位緩慢回復的情形。在有添加摻雜層的碳鋼系統,結合UV光源照射後,在照光時開路電位與腐蝕電流密度大幅度下降,而無紫外光源時亦以較緩速率回復電位,表示在有無照光的條件下都可有效抑制腐蝕。


    Dry storage canisters are used to hold the nuclear spent fuel for an interim period before transporting to the final disposal site. Austenitic 304 stainless steels and carbon steels are widely used as structural materials for nuclear power plants owing to its mechanical and corrosion resistance properties. The present study involved the investigation of photoelectrochemical behavior of TiO2 coated carbon steel as a structural material for dry storage canister aiming to prolong the photocathodic protection of carbon steel over a period of time after the shutdown off the UV illumination. The crystallinity of TiO2 coating was analyzed with the aid of Grazing Incident X-ray Diffraction (GIXRD) and the thickness of the oxide layer were analyzed with Scanning Electron Microscopy (SEM). The interfacial oxide layer was investigated with Laser Raman Spectroscopy to determine the residual magnetite and hematite phases. Electrochemical polarization analyses and open circuit potential measurements were conducted to evaluate the corrosion mitigation efficiency of the TiO2 coated carbon steel under UV illumination and dark condition. The results revealed that under appropriate heat treatment condition, the intermediate iron oxide layer formed not only deterred the diffusion of Fe from the substrate but also enhanced the photocatalytic effect of TiO2 coating. The addition of Fe dopant (Fe:Ti 1:1) helped to improve the slow rise of potential under the paucity of UV illumination. The results indicated that the plain TiO2 and doped TiO2 coating in combination with UV illumination mitigate the corrosion rate of the carbon steel in both dark and UV illumination conditions.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 基礎理論 5 2.1 腐蝕之電化學 5 2.1.1 混合電位模型(Mixed Potential Model, MPM) 5 2.1.2 影響ECP大小的重要參數 8 2.2 伊凡斯圖 (Evan’s Diagram) 9 2.3 腐蝕防制 13 第三章 文獻回顧 15 3.1 碳鋼於高溫環境之氧化情形與分析 15 3.1.1 碳鋼之高溫氧化 15 3.1.2 氧化層之拉曼散射光譜分析 18 3.2 二氧化鈦光觸媒 20 3.2.1 二氧化鈦之特性 21 3.2.2 溶膠–凝膠法(Sol-Gel Method)製備二氧化鈦 22 3.3 二氧化鈦光觸媒受氧化層之影響分析 24 3.3.1 氧化膜結構對光觸媒效果之影響 24 3.3.2 鐵離子的汙染對光觸媒效果之影響 25 3.4 電位記憶效應 26 3.4.1 記憶效應之機制 26 3.4.2 摻雜鐵離子於二氧化鈦內做為陰極防蝕 28 3.4.3 利用二氧化鈦做為陰極防蝕 30 第四章 實驗方法 33 4.1 實驗方法與實驗流程 33 4.2 試片製備 36 4.2.1 試片研磨 36 4.2.2 預長氧化膜 36 4.2.3 製備Ti-Fe膠體 37 4.2.4 製備二氧化鈦膠體 38 4.2.5 膠體被覆 39 4.3 試片分析 40 4.3.1 輝光放電光譜儀 40 4.3.2 共軛聚焦顯微拉曼光譜儀 41 4.3.3 低掠射角X光繞射 41 4.3.4 化學分析電子能譜儀 42 4.3.5 高解析熱場發射掃描式電子顯微鏡 42 4.4 電化學分析 43 4.4.1 開路電位監測及動態電位極化掃描 43 第五章 結果與討論 45 5.1 二氧化鈦被覆之ITO系統 45 5.1.1 ITO系統光觸媒效果 45 5.1.2 低掠角X光繞射分析二氧化鈦結構 46 5.2 二氧化鈦被覆之無摻雜碳鋼系統 48 5.2.1 預長氧化膜結果分析 48 5.2.2 SEM截面分析結果 50 5.2.3 氧化層性質對於二氧化鈦光催化效果之影響 54 5.2.4 被覆層數與鍛燒時間對於二氧化鈦光催化效果之影響 61 5.3 二氧化鈦被覆之具摻雜碳鋼系統 67 5.3.1 是否具摻雜膠體對於光催化效果之影響 68 5.3.2 被覆層數與二氧化鈦晶相於具摻雜膠體對於光催化效果之影響 70 5.3.3 具摻雜碳鋼系統之極化掃描分析結果 74 第六章 結論 78 參考文獻 80

    [1] 台灣電力股份有限公司, "用過核子燃料乾式貯存," 2016.
    [2] 陳哲生, "設備的防蝕塗裝," 中工高雄會刊, vol. 17, no. 3, pp. 45-52, 2010.
    [3] T. Konishi and S. Tsujikawa, "Slow Decline of Photovoltage After Illumination," presented at the Electrochemical Society, Paris, 1997.
    [4] D. D. Macdonald, "Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors," CORROSION, vol. 48, no. 3, pp. 194-205, 1992.
    [5] Y. Tan, Heterogeneous Electrode Processes and Localized Corrosion. 2012.
    [6] N. Perez, Electrochemistry and Corrosion Science. Boston: Springer, 2004.
    [7] D. A. Jones, Principles and prevention of corrosion. Macmillan, 1992.
    [8] D. Caplan, G. Sproule, R. Hussey, and M. Graham, "Oxidation of Fe-C alloys at 500 OC," Oxidation of Metals, vol. 12, no. 1, pp. 67-82, 1978.
    [9] J. Rujisomnapa, P. Seechompoo, P. Suwannachoat, S. Suebca, and P. Wongpanya, "High temperature oxidation behaviour of low carbon steel and austenitic stainless steel," Journal of Metals, Materials and Minerals, vol. 20, no. 3, pp. 31-36, 2010.
    [10] M. Marciuš, M. Ristić, M. Ivanda, and S. Musić, "Formation of iron oxides by surface oxidation of iron plate," Croatica Chemica Acta, vol. 85, no. 1, pp. 117-124, 2012.
    [11] S. J. Oh, D. C. Cook, and H. E. Townsend, "Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel," Hyperfine Interactions, journal article vol. 112, no. 1, pp. 59-66, 1998.
    [12] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," vol. 238, p. 37, 07/07/online 1972.
    [13] J. Zhang, P. Zhou, J. Liu, and J. Yu, "New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2," Physical Chemistry Chemical Physics, vol. 16, no. 38, pp. 20382-20386, 2014.
    [14] T. Yoko, K. Kamiya, and S. Sakka, Photoelectrochemical Properties of TiO2 Films Prepared by the Sol-Gel Method. 1987.
    [15] S.-H. Lee et al., "Synthesis of TiO 2 photocatalyst thin film by solvothermal method with a small amount of water and its photocatalytic performance," Journal of Photochemistry and Photobiology A: Chemistry, vol. 146, no. 1, pp. 121-128, 2001.
    [16] J. Huang, T. Shinohara, and S. Tsujikawa, "Effects of interfacial iron oxides on corrosion protection of carbon steel by TiO2 coating under illumination," Zairyo-to-Kankyo, vol. 46, no. 10, pp. 651-661, 1997.
    [17] J. Yuan and S. Tsujikawa, "Photo-effects of sol-gel derived TiO2 coating on carbon steel in alkaline solution," Zairyo-to-Kankyo, vol. 44, no. 10, pp. 534-542, 1995.
    [18] M. Graetzel and R. F. Howe, "Electron paramagnetic resonance studies of doped titanium dioxide colloids," Journal of Physical Chemistry, vol. 94, no. 6, pp. 2566-2572, 1990.
    [19] W. Choi, A. Termin, and M. R. Hoffmann, "The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics," The Journal of Physical Chemistry, vol. 98, no. 51, pp. 13669-13679, 1994.
    [20] J. Huang, T. Konishi, T. Shinohara, and S. Tsujikawa, "Sol-gel derived Ti-Fe oxide coating for photoelectrochemical cathodic protection of carbon steel," Zairyo-to-Kankyo, vol. 47, no. 3, pp. 193-199, 1998.
    [21] C. X. Lei, H. Zhou, Z. D. Feng, Y. F. Zhu, and R. G. Du, "Low-temperature liquid phase deposited TiO2 films on stainless steel for photogenerated cathodic protection applications," Applied Surface Science, vol. 257, no. 16, pp. 7330-7334, 2011/06/01/ 2011.
    [22] C.-X. Lei, H. Zhou, C. Wang, and Z.-D. Feng, "Self-assembly of ordered mesoporous TiO 2 thin films as photoanodes for cathodic protection of stainless steel," Electrochimica Acta, vol. 87, pp. 245-249, 2013.
    [23] Y. Liu, C. Xu, and Z. Feng, "Characteristics and anticorrosion performance of Fe-doped TiO 2 films by liquid phase deposition method," Applied Surface Science, vol. 314, pp. 392-399, 2014.
    [24] 鄧建龍、姚潔宜、張茂男, "X光繞射分析在半導體工業上的應用," 奈米通訊, vol. 15, no. 4, 2008.
    [25] S. Zumdahl, Chemistry: An Atoms First Approach, International ed., 2012.

    QR CODE