簡易檢索 / 詳目顯示

研究生: 林孟佑
Lin, Meng-Yu
論文名稱: 射頻磁控濺鍍法製備大面積的單層石墨薄膜
Large area graphene prepared by high temperature FR-sputtering
指導教授: 吳孟奇
Wu, Meng-Chyi
林時彥
Lin, Shih-Yen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 52
中文關鍵詞: 單層石墨薄膜
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大面積的單層石墨薄膜在製作電子元件上是有其必要性的。到目前為止,雖然CVD成長以及SiC昇華這兩種方式廣泛運用在製作大面積的石墨薄膜上,但是其表面的均勻性還是需要改善。在這篇論文裡,我們試著使用射頻磁控濺鍍法將我們的石墨薄膜高溫成長於Si(111)的基板。藉由拉曼光譜以及x光光電子能譜,我們發現隨著成長溫度的提升,產生了更多的sp2鍵結以及D-peak高度的提升。而這些現象指出了非晶石墨薄膜的形成。另外,藉降低成長功率,D-peak/G-peak的比例也有明顯的增高。而這可以歸因於在不同的濺鍍功率下會產生不同大小的碳塊沉積在基板上,而較小塊的碳塊會更容易形成鍵結,進而形成石墨薄膜。此外,我們也使用膠帶剝離法來製備石墨薄膜及製作元件,拉曼及電性的量測結果會分析於論文內。


    Large-area uniform graphene is required for the development of graphene electronics. Until now, although large-area graphene films can be prepared by either chemical-vapor deposition or SiC substrate sublimation, the uniformity of the films is still unacceptable for practical applications. In this thesis, graphene films are grown on Si (111) substrates by using a RF-sputtering system at high temperatures. Through XPS and Raman measurements, increasing sp2 bonding compositions and D-peak intensities with increasing growth temperatures are observed, which suggest a amorphous carbon film with graphene grains is obtained via this approach. Also observed is the increase of D-peak/G-peak ratios with decreasing RF powers. The results suggest that the growth of graphene films with even better uniformity by using the RF sputtering technique is limited by the C flake sizes deposited on the substrates at the first place. The phenomenon indicates that by supplying even smaller C flakes, graphene films with better crystalline qualities could be obtained. For comparison, the Raman spectrums and I-V characteristics of graphene flakes and devices fabricated by using exfoliation of Scotch tapes from the HOPG are also shown in this thesis.

    Contents Abstract (in Chinese) I Abstract (in English) II Contents III Chapter 1 Introduction 1 1-1 Motivation and methods to fabricate grapheme 1 1-2 Atomic structure, band structure and raman spectrum of graphene 2 1-3 Application and graphene device 3 Chapter 2 Equipments 11 2-1 Ratio frequency sputtering system 11 2-2 Scanning Electron Microscope (SEM) 12 2-3 Micro-Raman Spectroscopy (μ-RS) 13 2-4 X-ray photoelectron spectroscopy (XPS) 14 Chapter 3 Electrical properties of few layered graphene prepared by exfoliation method 21 3-1 Exfoliation graphene sample preparation 21 3-1-1 Temperature dependent on exfoliation method 3-1-1-1 Experiment 22 3-1-1-2 Result and discussion 22 3-2 Graphene channeled device fabrication 23 3-2-1 FLG channeled device characteristic 3-2-1-1 Experiment 23 3-2-1-2 Result and discussion 23 3-2-2 the effect of current annealing sample 3-2-2-1 Experiment 24 3-2-2-2 Result and discussion 24 3-3 Conclusions 25 Chapter 4 large area graphene fabricated by RF sputtering 32 4-1 The effect of graphene film grown under different RF power 33 4-1-1 Growth rate calibration of carbon film 4-1-1-1 Experiments 33 4-1-1-2 Results and Discussion 34 4-1-2 The crystallized structure by plasma power difference 4-1-2-1 Experiments 34 4-1-2-2 Results and Discussion 35 4-1-3 Conclusions 36 4-2 The effect of grapheme film grown under different growth temperature 36 4-2-1 Forming of 2D structure 4-2-1-1 Experiments 37 4-2-1-2 Results and Discussions 37 4-2-2 The crystallized structure by growth temperature difference 4-2-2-1 Experiments 38 4-2-2-2 Results and Discussions 38 4-2-3 Conclusions 38 4-3 The effect of graphene film grown under different substrate 39 4-3-1 Hexagonal structure substrate effect on graphene growth 4-3-1-1Experiments 39 4-3-1-2 Results and Discussions 39 4-3-2 Conclusions 40 4-4 Conclusion 40 Chapter 5 Conclusions 51 Reference 53

    [1] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature, vol. 6, 183-191, (2007).
    [2] Albert Dato, Zonghoon Lee, Ki-Joon Jeon, Rolf Erni, Velimir Radmilovi, Thomas J. Richardson and Michael Frenklach, “Clean and highly ordered graphene synthesized in the gas phase”, Chem. Commun. , 6095, (2009).
    [3] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Phys. Rev. B, 61, 870 (1984).
    [4] Fengnian Xia, Thomas Mueller, Roksana Golizadeh-Mojarad, Marcus Freitag, Yu-ming Lin, James Tsang, Vasili Perebeinos and Phaedon Avouris, “Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor”, Nano Lett., 9, 1039-1044 (2009).
    [5] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large-Area, few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Lett., 9, 30-35 (2009).
    [6] K. S. Novoselov, a. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electronic Field Effect in Atomically Thin Carbon Films”, Science, 306, 666-669, (2004).
    [7] Xuesong Li, Yanwu Zhu, Weiwei Cai, Mark Borysiak, Boyang Han, David Chen, Richard D. Piner, Luigi Colombo and Rodney S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes”, Nano Lett, 9, 4359-4363, (2009).
    [8] C. Riedl, A. A. Zakharov and U. Starke, “Precise in situ thickness analysis of epitaxial graphene layers on SiC(0001) using low-energy electron diffraction and angle resolved ultraviolet photoelectron spectroscopy”, Appl. Phys. Lett., 93, 033106, (2008).
    [9] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Phys. Rev. B , 61, 20, (1999)
    [10] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, “Raman spectroscopy in graphene”, Physics Reports 473, 51-87, (2009)
    [11] Irene Calizo, Igor Bejenari, Muhammad Rahman, Guanxiong Liu and Alexander A. Balandin, “Ultraviolet Raman Microscopy of Single and Multi-layer Graphene”, J. Appl. Phys. 106, 043509 (2009)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE