簡易檢索 / 詳目顯示

研究生: 陳治豪
Chen, Chih-Hao
論文名稱: 硼含量對於多元氮化鋁鉻鈮鈦硼薄膜機械性質及氧化行為之影響
Effect of Boron Content on the Mechanical and Oxidation Characteristics of (AlCrNbTiBx)N Multi-component Nitride Coatings
指導教授: 陳柏宇
Chen, Po-Yu
杜正恭
Duh, Jenq-Gong
口試委員: 吳芳賓
Wu, Fan-Bean
吳宛玉
Wu, Wan-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 72
中文關鍵詞: 保護性薄膜氮化物硬質薄膜奈米複合薄膜機械性質高溫氧化行為
外文關鍵詞: Protective coatings, Nitride hard coatings, Nanocomposite coatings, Mechanical properties, Oxidation behaviors
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在保護性薄膜的發展中,硬質薄膜之氧化特性逐漸受到關注,其重要性在提高工件於高溫應用下之性能和可靠度。本研究重點為探討添加不同硼含量對於 (AlCrNbTiBx)N多元氮化物薄膜之機械性質和氧化特性的影響。結果顯示,硼的添加會導致顯著的微觀結構變化,薄膜截面從明顯的柱狀結構,過渡到更緻密的形貌。此外,硼含量的增加可以減小晶粒尺寸,進而提高硬度,在加入硼含量為5.8 at% 可達到最大值27.0 GPa。然而,進一步增加硼含量反而會使硬度降低,其歸因於形成過多較軟之非晶相BN及過小之晶粒,抑制了強化特性。
    除了機械性能的提升,微觀結構的緻密化也對薄膜氧化行為產生影響。添加硼含量2.3 at% 的薄膜中尤為顯著,其氧化物厚度減小,並且在表面形成了緻密的 (Al,Cr)2O3保護層,有效阻止了氧的滲入。然而,硼含量更高的薄膜因為形成較不具保護性的B2O3,破壞了氧化層的完整性,導致在高溫下發生較劇烈的氧化行為。
    本研究藉由調變(AlCrNbTiBx)N薄膜中的硼含量,針對其機械性能和抗氧化特性進行優化,透過策略性地調控薄膜中的硼含量,可望提高含硼薄膜於保護性塗層之應用潛力。


    The importance of oxidation characteristics has been receiving growing attention in the development of hard coatings, with the objective of enhancing the performance and reliability of workpieces at elevated temperatures. This study focuses on the effect of boron content in improving the mechanical and oxidation characteristics of (AlCrNbTiBx)N multi-component nitride coatings. The incorporation of boron induces microstructural alterations, transitioning from a distinct columnar feature to a denser structure. Additionally, increasing boron content reduces crystallite size of coatings, while enhancing hardness, reaching a peak value of 27.0 GPa with the introduction of 5.8 at% B. However, a further increase in boron content leads to a diminishing effect on hardness, attributed to the excessive formation of soft amorphous BN phase and the reduction of grain size to a critical limit.
    In addition to the mechanical enhancement, the microstructural densification exerts a profound influence on oxidation resistance. This phenomenon is most pronounced in coatings with 2.3 at% B, where oxide thickness is reduced, and a compact surface with Al-rich protective oxide scale effectively impedes the ingress of oxygen. Nevertheless, it becomes evident that higher boron content disrupts the integrity of the oxide scale due to the formation of less protective B2O3, resulting in a deterioration of oxidation resistance at elevated temperatures.
    In summary, this study underscores the pivotal role of boron content in tailoring the mechanical properties and oxidation resistance of (AlCrNbTiBx)N coatings. It highlights the potential for optimizing boron-containing coatings by strategically adjusting boron content, offering promising implications for protective coating applications.

    Abstract II Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objectives 2 Chapter 2 Literature Review 4 2.1 Surface Engineering 4 2.2 Coating Deposition 6 2.2.1 Physical vapor deposition (PVD) 6 2.2.1 Sputtering technique 7 2.3 Nitride-based Protective Coatings 11 2.3.1 Binary and ternary nitride hard coatings 11 2.3.2 Multi-component nitride coatings 13 2.3.3 Nanoscale multilayer coatings 14 2.3.4 Nanocomposite coatings 16 2.4 Transition Metal Boron Nitride Coatings 24 2.4.1 Mechanical properties 24 2.4.2 Oxidation resistance 25 Chapter 3 Experimental Procedures 27 3.1 Coating Deposition Procedure 27 3.2 Oxidation Test 29 3.3 Characterization and Analysis 30 3.3.1 Element composition analysis 30 3.3.2 Microstructure analysis 30 3.3.3 Crystallographic identification 30 3.3.4 Mechanical properties evaluation 30 3.3.5 Oxidation behavior identification 31 Chapter 4 Results and Discussions 33 4.1 Influence of Boron Content on As-deposited Coatings 33 4.1.1 Chemical composition of as-deposited nitride coatings 33 4.1.2 XRD crystal structure of as-deposited nitride coatings 35 4.1.3 SEM morphology of as-deposited nitride coatings 38 4.1.4 Mechanical properties of as-deposited coatings 41 4.2 Influence of Boron Content on Oxidation Behavior 46 4.2.1 Surface concentrations and oxide growth of oxidized coatings 46 4.2.2 XRD identification of oxidized coatings 55 4.2.3 XPS elemental depth profile of oxide scale 55 4.2.4 Evolution of hardness and elastic modulus in oxidized coatings 62 Chapter 5 Conclusion 64 References 66

    1. Chen, H.-W., et al., Oxidation resistance of nanocomposite CrAlSiN under long-time heat treatment. Surface and Coatings Technology, 2011. 206: p. 1571-1576.
    2. Testing of, M., et al., Overview of Coating Materials, Surface Treatments, and Screening Techniques for Tribological Applications-Part 2 : Screening Techniques. 1987, West Conshohocken, Pa: ASTM International.
    3. Martins, R.M.S., In-situ X-Ray diffraction studies during growth of Ni-Ti Shape Memory Alloy films and their complementary ex-situ characterization. 2008.
    4. Lin, A.Y.M., M.A. Meyers, and K.S. Vecchio, Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study. Materials Science and Engineering: C, 2006. 26(8): p. 1380-1389.
    5. Hintermann, H.E., Tribological and Protective Coatings by Chemical Vapor-Deposition. Thin Solid Films, 1981. 84(3): p. 215-243.
    6. PalDey, S. and S.C. Deevi, Properties of single layer and gradient (Ti,Al)N coatings. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003. 361(1-2): p. 1-8.
    7. Ichimura, H. and A. Kawana, High-Temperature Oxidation of Ion-Plated Tin and Tialn Films. Journal of Materials Research, 1993. 8(5): p. 1093-1100.
    8. Wittmer, M., J. Noser, and H. Melchior, Oxidation-Kinetics of Tin Thin-Films. Journal of Applied Physics, 1981. 52(11): p. 6659-6664.
    9. Berg, G., et al., Development of chromium nitride coatings substituting titanium nitride. Surface & Coatings Technology, 1996. 86(1-3): p. 184-191.
    10. Hones, P., R. Sanjines, and F. Levy, Characterization of sputter-deposited chromium nitride thin films for hard coatings. Surface & Coatings Technology, 1997. 94-5(1-3): p. 398-402.
    11. Jindal, P.C., et al., Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning. International Journal of Refractory Metals & Hard Materials, 1999. 17(1-3): p. 163-170.
    12. Chim, Y.C., et al., Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2009. 517(17): p. 4845-4849.
    13. Kimura, A., et al., Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films. Surface & Coatings Technology, 2003. 169: p. 367-370.
    14. Banakh, O., et al., High-temperature oxidation resistance of CrAlN thin films deposited by reactive magnetron sputtering. Surface & Coatings Technology, 2003. 163: p. 57-61.
    15. Hirai, M., et al., Characteristics of (Cr1-x, Alx)N Films Prepared by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2001. 40(2S): p. 1056.
    16. Endrino, J.L., et al., Oxidation tuning in AlCrN coatings. Surface & Coatings Technology, 2007. 201(8): p. 4505-4511.
    17. Yeh, J.W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
    18. Cantor, B., et al., Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004. 375-377: p. 213-218.
    19. Chen, T.K., et al., Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology, 2004. 188-189: p. 193-200.
    20. Hsieh, M.-H., et al., Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology, 2013. 221: p. 118–123.
    21. Hsu, S.-Y., et al., Combinatorial synthesis of reactively co-sputtered high entropy nitride (HfNbTiVZr)N coatings: Microstructure and mechanical properties. Surface and Coatings Technology, 2022. 442: p. 128564.
    22. Lin, Y.-C., et al., Effect of the N2/(Ar+N2) ratio on mechanical properties of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)Nx films. Materials Chemistry and Physics, 2021. 274: p. 125195.
    23. Lo, W.-L., et al., Improvement of high entropy alloy nitride coatings (AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias. Surface and Coatings Technology, 2020. 401: p. 126247.
    24. Shen, W.J., et al., Superior Oxidation Resistance of (AlCrNbSiTi)N High-Entropy Nitride. Journal of the Electrochemical Society, 2013. 160(11): p. C531-C535.
    25. Wang, J.J. and F.Y. Ouyang, Oxidation behavior of Al-Cr-Nb-Si-Zr high entropy nitride thin films at 850 °C. Corrosion Science, 2021. 187.
    26. Chang, Z.C. and J.Y. Liang, Oxidation Behavior and Structural Transformation of (CrTaTiVZr)N Coatings. Coatings, 2020. 10(4).
    27. Kirnbauer, A., et al., Mechanical properties and thermal stability of reactively sputtered multi-principal-metal Hf-Ta-Ti-V-Zr nitrides. Surface & Coatings Technology, 2020. 389.
    28. Huang, P.K. and J.W. Yeh, Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings. Scripta Materialia, 2010. 62(2): p. 105-108.
    29. Chang, C.-C., et al., Lattice distortion or cocktail effect dominates the performance of Tantalum-based high-entropy nitride coatings. Applied Surface Science, 2022. 577: p. 151894.
    30. Koehler, J.S., Attempt to Design a Strong Solid. Physical Review B, 1970. 2(2): p. 547-&.
    31. Yashar, P.C. and W.D. Sproul, Nanometer scale multilayered hard coatings. Vacuum, 1999. 55(3-4): p. 179-190.
    32. Panjan, M., et al., TEM investigation of TiAlN/CrN multilayer coatings prepared by magnetron sputtering. Surface & Coatings Technology, 2007. 202(4-7): p. 815-819.
    33. Stueber, M., et al., Concepts for the design of advanced nanoscale PVD multilayer protective thin films. Journal of Alloys and Compounds, 2009. 483(1-2): p. 321-333.
    34. Vepřek, S., et al., Novel thermodynamically stable and oxidation resistant superhard coating materials. Surface and Coatings Technology, 1996. 86-87: p. 394-401.
    35. Zhang, R.F. and S. Veprek, On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system. Materials Science and Engineering: A, 2006. 424(1): p. 128-137.
    36. Veprek, S., et al., Different approaches to superhard coatings and nanocomposites. Thin Solid Films, 2005. 476(1): p. 1-29.
    37. Musil, J., Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 2000. 125(1): p. 322-330.
    38. Hsu, S.-Y., et al., Hard yet tough thermodynamics-driven nanostructured (AlCrNbSixTi)N multicomponent nitride hard coating. Journal of Alloys and Compounds, 2023. 947: p. 169645.
    39. Watanabe, H., et al., The mechanical properties and microstructure of Ti-Si-N nanocomposite films by ion plating. Surface & Coatings Technology, 2003. 169: p. 452-455.
    40. Martin, P.J., et al., Nanocomposite Ti-Si-N, Zr-Si-N, Ti-Al-Si-N, Ti-Al-V-Si-N thin film coatings deposited by vacuum arc deposition. Surface & Coatings Technology, 2005. 200(7): p. 2228-2235.
    41. Ding, X.Z., X.T. Zeng, and Y.C. Liu, Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathod arc. Thin Solid Films, 2011. 519(6): p. 1894-1900.
    42. Tritremmel, C., et al., Influence of Al and Si content on structure and mechanical properties of arc evaporated Al-Cr-Si-N thin films. Thin Solid Films, 2013. 534: p. 403-409.
    43. Holubar, P., M. Jilek, and M. Sima, Present and possible future applications of superhard nanocomposite coatings. Surface & Coatings Technology, 2000. 133: p. 145-151.
    44. Wang, Y.X., et al., Toward hard yet tough CrAlSiN coatings via compositional grading. Surface & Coatings Technology, 2013. 231: p. 346-352.
    45. Polcar, T. and A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings. Surface & Coatings Technology, 2011. 206(6): p. 1244-1251.
    46. Zhang, S.H., et al., A superhard CrAlSiN superlattice coating deposited by a multi-arc ion plating: II. Thermal stability and oxidation resistance. Surface & Coatings Technology, 2013. 214: p. 153-159.
    47. Veprek, S. and M.G.J. Veprek-Heijman, The formation and role of interfaces in superhard nc-MeN/a-SiN nanocomposites. Surface & Coatings Technology, 2007. 201(13): p. 6064-6070.
    48. Veprek, S., The search for novel, superhard materials. Journal of Vacuum Science & Technology A, 1999. 17(5): p. 2401-2420.
    49. Patscheider, J., Nanocomposite Hard Coatings for Wear Protection. MRS Bulletin, 2003. 28(3): p. 180-183.
    50. Musil, J., Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 2012. 207: p. 50-65.
    51. Tritremmel, C., et al., Oxidation behavior of arc evaporated Al-Cr-Si-N thin films. Journal of Vacuum Science & Technology A, 2012. 30(6).
    52. Chang, Y.Y., et al., High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. Journal of Alloys and Compounds, 2008. 461(1-2): p. 336-341.
    53. Lee, D.B., T.D. Nguyen, and S.K. Kim, Air-oxidation of nano-multilayered CrAlSiN thin films between 800 and 1000 °C. Surface & Coatings Technology, 2009. 203(9): p. 1199-1204.
    54. Park, I.W., et al., Microstructures, mechanical properties, and tribological behaviors of Cr-Al-N, Cr-Si-N, and Cr-Al-Si-N coatings by a hybrid coating system. Surface & Coatings Technology, 2007. 201(9-11): p. 5223-5227.
    55. Tritremmel, C., et al., Microstructure and mechanical properties of nanocrystalline Al-Cr-B-N thin films. Surface & Coatings Technology, 2012. 213: p. 1-7.
    56. Polychronopoulou, K., et al., The nanostructure, wear and corrosion performance of arc-evaporated CrBN nanocomposite coatings. Surface & Coatings Technology, 2009. 204(3): p. 246-255.
    57. Mitterer, C., et al., Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings. Surface & Coatings Technology, 1999. 120: p. 405-411.
    58. Neidhardt, J., et al., Nanocomposite Ti-B-N coatings synthesized by reactive arc evaporation. Acta Materialia, 2006. 54(16): p. 4193-4200.
    59. Kiryukhantsev-Korneev, P.V., et al., Effect of nitrogen partial pressure on the structure, physical and mechanical properties of CrB and Cr-B-N films. Thin Solid Films, 2009. 517(8): p. 2675-2680.
    60. Gorishnyy, T.Z., et al., Physical and mechanical properties of reactively sputtered chromium boron nitride thin films. Thin Solid Films, 2003. 445(1): p. 96-104.
    61. Sakamaoto, Y., et al., Structure and properties of Cr-B, Cr-B-N and multilayer Cr-B/Cr-B-N thin films prepared by. r.f.-sputtering. Surface & Coatings Technology, 2003. 174: p. 444-449.
    62. Mendez, A., et al., Effect of Al content on the hardness and thermal stability study of AlTiN and AlTiBN coatings deposited by HiPIMS. Surface & Coatings Technology, 2021. 422.
    63. Yi, J.Y., et al., Performance of AlTiBN and AlTiTaN coatings during milling of titanium. Surface Engineering, 2019. 35(6): p. 501-506.
    64. Rebholz, C., et al., Hard and superhard TiAlBN coatings deposited by twin electron-beam evaporation. Surface & Coatings Technology, 2007. 201(13): p. 6078-6083.
    65. Chang, C.L., C.S. Huang, and J.Y. Jao, Microstructural, mechanical and wear properties of Cr-Al-B-N coatings deposited by DC reactive magnetron co-sputtering. Surface & Coatings Technology, 2011. 205(8-9): p. 2730-2737.
    66. Sato, T., et al., Effects of boron contents on microstructures and microhardness in CrAlN films synthesized by cathodic arc method. Surface & Coatings Technology, 2006. 201(3-4): p. 1348-1351.
    67. Le, V.V., T.T. Nguyen, and S.K. Kim, The influence of nitrogen pressure and substrate temperature on the structure and mechanical properties of CrAlBN thin films. Thin Solid Films, 2013. 548: p. 377-384.
    68. Warcholinski, B., et al., Effect of nitrogen pressure and substrate bias voltage on the properties of Al-Cr-B-N coatings deposited using cathodic arc evaporation. Tribology International, 2021. 154.
    69. Nose, M., et al., Microstructure and Mechanical Properties of Cr-Al-B-N Coatings Prepared by Reactive D.C. and R.F. Co-Sputtering. Materials Science Forum - MATER SCI FORUM, 2010. 638-642: p. 781-786.
    70. Zhang, G.A., et al., Structure and mechanical properties of Cr-B-N films deposited by reactive magnetron sputtering. Journal of Alloys and Compounds, 2009. 486(1-2): p. 227-232.
    71. Budna, K.P., et al., Synthesis-structure-property relations for Cr-B-N coatings sputter deposited reactively from a Cr-B target with 20 at% B. Vacuum, 2008. 82: p. 771-776.
    72. Ma, Q., et al., Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication. Applied Surface Science, 2016. 377: p. 394-405.
    73. Chen, W., et al., Comparison of microstructures, mechanical and tribological properties of arc-deposited AlCrN, AlCrBN and CrBN coatings on Ti-6Al-4V alloy. Surface and Coatings Technology, 2020. 404: p. 126429.
    74. Zhou, J., et al., Effect of B-doping on the mechanical properties, thermal stability and oxidation resistance of TiAlN coatings. International Journal of Refractory Metals and Hard Materials, 2021. 98: p. 105531.
    75. Nose, M., et al., Self-hardening effect of CrAlN/BN nanocomposite films deposited by direct current and radio frequency reactive cosputtering. Thin Solid Films, 2012. 523: p. 6–10.
    76. Hu, C., L. Chen, and V. Moraes, Structure, mechanical properties, thermal stability and oxidation resistance of arc evaporated CrAlBN coatings. Surface and Coatings Technology, 2021. 417: p. 127191.
    77. Shtansky, D.V., et al., Characterization of nanostructured multiphase Ti–Al–B–N thin films with extremely small grain size. Surface and Coatings Technology, 2001. 148(2): p. 206-215.
    78. Pshyk, O., et al., High temperature behavior of functional TiAlBSiN nanocomposite coatings. Surface and Coatings Technology, 2016. 305: p. 49–61.
    79. Chang, Y.-Y., et al., Tribological and mechanical properties of AlCrBN hard coating deposited using cathodic arc evaporation. Surface and Coatings Technology, 2022. 432: p. 128097.
    80. Zhang, H., et al., Temperature-dependent oxidation behavior of arc evaporated Al–Ti–B–N coatings. Corrosion Science, 2022. 203: p. 110347.
    81. Pfeiler, M., et al., Improved oxidation resistance of TiAlN coatings by doping with Si or B. Surface and Coatings Technology, 2009. 203(20): p. 3104-3110.
    82. Nguyen, T., S. Kim, and D. Lee, Oxidation of nano-multilayered CrAlBN thin films between 600 and 1000 °C in air. Surface & Coatings Technology - SURF COAT TECH, 2010. 205.
    83. Zhang, H., et al., Temperature-dependent oxidation behavior of arc evaporated Al–Ti–B–N coatings. Corrosion Science, 2022.
    84. Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992. 7(6): p. 1564-1583.
    85. Alexander, L. and H.P. Klug, Determination of Crystallite Size with the X‐Ray Spectrometer. Journal of Applied Physics, 2004. 21(2): p. 137-142.
    86. Naik, S.N. and S.M. Walley, The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. Journal of Materials Science, 2020. 55(7): p. 2661-2681.
    87. Hansen, N., Hall–Petch relation and boundary strengthening. Scripta Materialia, 2004. 51(8): p. 801-806.
    88. Janssen, G.C.A.M., Stress and strain in polycrystalline thin films. Thin Solid Films, 2007. 515(17): p. 6654-6664.
    89. Tritremmel, C., et al., Mechanical and tribological properties of AlTiN/AlCrBN multilayer films synthesized by cathodic arc evaporation. Surface and Coatings Technology, 2014. 246: p. 57-63.
    90. Thermochemical Data of Pure Substances Third Edition, Two Volumes. Vol. 1:  Ag-Kr and Vol. II:  La-Zr By Ihsan Barin (ZEUS GmbH, FRG), in collaboration with Gregor Platzki. VCH:  New York. 1995. 1900 pp. $535.00. ISBN 3-527-28745-0. Journal of the American Chemical Society, 1996. 118(39): p. 9459-9459.
    91. Dreiling, I., et al., Characterization and oxidation behavior of MTCVD Ti–B–N coatings. Surface and Coatings Technology, 2011. 206(2): p. 479-486.
    92. Chari, C.S. and K.T. Faber, Oxidation resistance of AlN/BN via mullite-type Al18B4O33. Journal of the European Ceramic Society, 2022. 42(8): p. 3437-3445.

    QR CODE