簡易檢索 / 詳目顯示

研究生: 蔡承穎
Tsai, Cheng-Ying
論文名稱: Theoretical Investigation on Longitudinal Beam Dynamics and Noise Effects on Beam Motion in Electron Synchrotrons
電子同步加速器之縱向射束動力學理論探討與雜訊效應之影響
指導教授: 周炳榮
Chou, Ping-Jung
朱國瑞
Chu, Kwo Ray
口試委員: 陳仕宏
Chen, Shih-Hung
周炳榮
Chou, Ping-Jung
朱國瑞
Chu, Kwo Ray
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 157
中文關鍵詞: 同步加速器縱向動力學
外文關鍵詞: booster, synchrotron, longitudinal beam dynamics
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數值粒子追蹤技術 (Numerical particle tracking technique) 在模擬加速器中之射束動力學是一個非常有用的工具。此方法之基礎在於建立粒子的基本運動方程式,並在給定機器相關的參數之後,便能進行各種動力學參數的計算。本論文目的在於發展此粒子追蹤模擬程式,並利用其探討同步加速器中增能環之電子束縱向動力學。我們以台灣光子源 (Taiwan Photon Source, TPS) 之增能環的參數為基準來進行探討研究。討論的議題包含:粒子加速過程中,射束動力學參數隨時間的演變以及各種雜訊對電子束團之影響。另外,我們同時利用此模擬程式考慮一個較實際的狀況,即電子束團從上游之直線加速器注入增能環時,入射條件偏差對粒子加速過程期間之射束動力學的影響。

    在此論文中,我們首先以解析的方式分析幾個對單一粒子可能造成的各種效應的影響。接著,以發展出來的多粒子模擬程式考慮一些更接近實際的狀況,並將其結果與解析公式作對照。我們嘗試對粒子加速過程時的射束動力學予以分段探討,並分析各階段中主要之作用機制。另外,我們也利用此模擬程式作了一系列關於系統雜訊、隨機雜訊與偏差效應的計算。

    根據計算的結果顯示,若是電子注入增能環之能量偏差可以控制在0.25 %之內,或是,相位(或時間)偏差在0.3 rad (或100 psec) 之內,則電子束在加速過程中的捕獲效率 (capture efficiency) 可以維持在99.9 %以上。另外,考慮由於速調管之漣波效應 (klystron ripple effect) 引起的高頻加速腔之相位調制影響時,若調制強度可以維持在-50 dBc以下 (調制頻率相對於操作頻率為180 Hz),則此效應對電子束團的動力學影響是不明顯的。接著,對於高頻加速腔之振幅與相位雜訊的影響也在此論文中探討。其結果顯示,在振幅與相位誤差分別小於 ± 1 %與 ± 0.1 deg時,電子束的運動是幾乎不受影響的。


    The purpose of this thesis is to develop a particle tracking code for the booster synchrotron of Taiwan Photon Source (TPS). Issues of longitudinal beam dynamics during energy ramping were discussed, including noise effects and injection errors of beam from linear accelerator (linac).

    In the thesis, analytical approaches to various effects on beam dynamics were presented first. Then, the numerical approach employing multi particle tracking was used to simulate realistic situations and the results were compared with analytical ones in order to validate the simulation codes. In addition, beam dynamics has been characterized and discussed during energy ramping cycle from three bunches merging into one. Moreover, based on the developed simulation program, there have been a series of numerical experiments conducted to investigate the evolution of beam dynamical parameters involving those effects such as injection offsets, RF output phase modulations, and various noises.

    The results indicated that capture efficiency can be preserved (99.9 %) with an individually allowed fractional energy offset of 0.4 % and phase or time offsets of 0.63 rad or 200 psec from injection. Both interleaving effects are expected to further degrade the performance and their estimates are presented. The phase modulation strength less than 50 dBc (0.3 deg) at 180 Hz has been shown less effective on beam dynamical properties. Radio frequency (RF) amplitude and phase errors are also examined via particle tracking simulation. It is noted that the amplitude error within ± 1 % and phase error within ± 0.1 deg are tolerable for beam evolution during ramping process.

    Contents Acknowledgement i Abstract ii Contents iv 1 Introduction 1 2 General description of the TPS booster ring 6 2.1 Injector system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Electron gun and linac . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Munti-bunch mode (MBM) . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.4 Single-bunch mode (SBM) . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 TPS booster ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Booster RF system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Longitudinal beam dynamics in electron synchrotrons 13 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Basic longitudinal dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Necessary condition for synchrotron operation . . . . . . . . . . . . . 14 3.2.2 Principle of longitudinal phase focusing and its physical interpretation 16 3.2.3 RF requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.4 Longitudinal equations of motion . . . . . . . . . . . . . . . . . . . . 22 3.2.5 Synchrotron oscillation motion . . . . . . . . . . . . . . . . . . . . . . 30 3.2.6 Longitudinal adiabatic damping . . . . . . . . . . . . . . . . . . . . . 33 3.2.7 Properties of synchrotron radiation from electrons . . . . . . . . . . . 36 3.2.8 Radiation damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.9 Quantum excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.10 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Advanced beam dynamics issues . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Cathode voltage ripple effect . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.2 Energy and phase offsets due to linac injection . . . . . . . . . . . . . 54 3.3.3 Random noise effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Numerical results 58 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Simulation procedures and technique . . . . . . . . . . . . . . . . . . . . . . 58 4.3 Basic parameters of TPS booster ring . . . . . . . . . . . . . . . . . . . . . . 66 4.4 Longitudinal beam dynamics in storage rings (constant energy configuration) 66 4.4.1 Comparison with R. Siemann’s model [1–3] . . . . . . . . . . . . . . . 66 4.4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.5 Longitudinal beam dynamics in booster synchrotrons (ramping energy configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5.1 Analytical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.6 Longitudinal beam dynamics involving cathode-voltage ripple effect of highpower klystron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.6.2 Test report and quantitative discussion . . . . . . . . . . . . . . . . . 104 4.6.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.7 Longitudinal beam dynamics with RF random noises . . . . . . . . . . . . . 110 4.7.1 Qualitative description . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.7.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.8 Longitudinal beam dynamics involving injection offsets . . . . . . . . . . . . 127 4.8.1 Qualitative description . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.8.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5 Summary, conclusion, and future remarks 134 Appendix 137 A Symbols and Notations 138 B Convergence tests and model comparison 143 B.1 Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 B.2 Model comparison: an example of SLAC PEP . . . . . . . . . . . . . . . . . 143 C MAD lattice input file 149 D Flow chart of the computer program 154 Bibliography 155

    [1] R. Siemann, “Computer Models of Instabilities in Electron Storage Rings,” in AIP
    Conference Proceedings, H. C. Wolfe, Ed., no. 127, 1983, pp. 368–442.
    [2] R. Siemann, “Computer Simulation of Bunch Lengthening in SPEAR,” Nuclear Instruments
    and Methods, vol. 203, pp. 57–62, 1982.
    [3] R. Siemann, “Single Beam Stability in PEP and PETRA,” Nuclear Instruments and Methods
    in Physics Research Section A, vol. 221, pp. 293–312, 1984.
    [4] W. Namkung, “Review of Third Generation Light Sources,” in International Particle
    Accelerator Conference, Kyoto, Japan, 2010.
    [5] Taiwan Photon Source (TPS) Design Handbook (Draft). NSRRC, Octobor 2009.
    [6] M. Hara, T. Nakamura, and T. Ohshima, “A Ripple Effect of a Klystron Power Supply
    on Synchrotron Oscillation,” Particle Accelerators, vol. 59, pp. 143–156, 1998.
    [7] “MAD program,” http://mad.home.cern.ch/mad/mad8web/mad8.html.
    [8] S. Y. Lee, Accelerator Physics. World Scientific, 2004.
    [9] J. A. MacLachlan, “Particle Tracking in E- phi Space for Synchrotron Design and Diag-
    nosis,” Fermilab, Tech. Rep. FERMILAB-Conf-92/333, .
    [10] V. Nys, “Computer simulation of the longitudinal motion including the wake-field force
    using a Hermite polynomial expansion,” CERN, Tech. Rep. CERN/LEP-TH/86-34, .
    [11] H. Bruck, Circular Particle Accelerators, 1966, no. LA-TR-72-10 Rev.
    [12] J. Gareyte, “Beam observation and the nature of instabilities,” in AIP Conference
    Proceedings, no. 184, pp. 343–429.
    [13] J. D. Jackson, Classical Electrodynamics, 3rd ed. John Wiley Sons, 1993.
    [14] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. Pearson Addison
    Wesley, 2002.
    [15] L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed. Elsevier, , volume 1 of Course of
    Theoretical Physics, translated from the Russian by J. B. Sykes and J. S. Bell.
    [16] K. K. Lin, K. T. Hsu, T. S. Ueng, J. P. Chiou, J. I. Hwang, Y. C. Liu, and J. Modeer,
    “Performance of SRRC 1.3 GeV electron booster synchrotron,” Nuclear Instruments
    and Methods in Physics Research Section A, vol. 361, pp. 1–12, 1995.
    [17] K. K. Lin and K. C. Cheng, Ramping behavior of booster synchrotron, SRRC/IJ/IM/88-
    01.
    [18] M. Sands, “The physics of electron storage rings, an introduction,” , Tech. Rep. SLAC-
    121, .
    [19] J. Schwinger, “On the classical radiation of accelerated electrons,” Physical Review,
    vol. 75, p. 19121925, 1949.
    [20] A. W. Chao, “Effects of synchrotron radiation on beam dynamics,” Fall 2010, class
    handout at NTHU.
    [21] P. J. Bryant and K. Johnsen, The principles of Circular Accelerators and Storage Rings.
    Cambridge University Press, 1993.
    [22] A. W. Chao and M. Tigner, Eds., Handbook of Accelerator Physics and Engineering,
    3rd ed. World Scientific, 2002.
    [23] S. Date, K. Soutome, and A. Ando, “Rf noise and longitudinal emittance in an electron
    storage ring,” in AIP Conference Proceedings, vol. 356, pp. 163–174.
    [24] D. Boussard, G. Dome, and C. Graziani, “The influence of rf noise on the lifetime of
    bunched proton beams,” Proc. XIth International Conference on High Energy Accelerators
    , p. 620, 1980.
    [25] R. H. Helm, M. J. Lee, , P. L. Morton, and M. Sands, “Evaluation of synchrotron
    radiation integrals,” SLAC-PUB-1193 (A), 1973.
    [26] G. Dugan, “Phys 450B: Introduction to Accelerator Physics,” USPAS, 2002.
    [27] P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical
    sciences, 3rd ed. McGraw Hill.
    [28] “Technical Specification of the 500-MHz, 300-kW CW RF Transmitter System for Tai-
    wan Photon Source,” NSRRC, Tech. Rep. version 2008/08/29.
    15

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE