研究生: |
黃國峰 Huang, KuoFeng |
---|---|
論文名稱: |
鈷鉑多層膜之微區磁性控制以及電流驅動翻轉之研究 Control of local magnetic properties and electrically switching on Co/Pt multilayers |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: |
曾俊元
Tseng, Tseung-Yuen 張慶瑞 Chang, Ching-Ray 吳志毅 Wu, Chih-I 林秀豪 Lin,Hsiu-Hau |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 138 |
中文關鍵詞: | 鈷鉑多層膜 、磁性圖騰化 、自旋軌道力矩 、磁性記憶體 |
外文關鍵詞: | Co/Pt Multilayers, Magnetic patterning, Spin-orbit-torque, MRAM |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於新穎磁性元件的高應用性,吸引了許多相關的研究,這其中包含了圖樣式磁紀錄媒體、磁性記憶體、以及磁區壁元件。但當為了高儲存密度而微縮化這些磁性元件的體積時,鐵磁層的熱穩定性也會跟著下降,這對於長期的資訊儲存是一項嚴重的考驗,具有垂直異向性的鐵磁材料因此而被引入到這些磁性元件中,解決小體積時的熱穩定性的問題。除此之外,垂直異向性的鐵磁材料也能幫助降低自旋傳輸翻轉時的能障,使得自旋傳輸翻轉的效率增加。因此如何整合具有垂直異向性的鐵磁材料至磁性元件中便是一個重要的課題。鈷鉑多層膜是一種具有垂直異向性的鐵磁材料,因為其容易製造以及其垂直異向性可以大範圍調整的特性,而被應用於製作具垂直異向性鐵磁層之磁性元件的原型中。但由於其垂直異向性來自於鈷與鉑的介面,因此其磁性質容易受到熱處理而影響,不易控制。此外,鉑具有很強的自旋軌道耦合使自旋流消失,以及鈷鉑多層膜具有很高的磁阻尼係數,這兩項因素使得鈷鉑多層膜難以用自旋傳輸的方式翻轉,從而限制了鈷鉑多層膜在磁性元件的適用性。
有鑑於此,在本文中,我們將聚焦鈷鉑多層膜在實際應用的兩個主要問題中: (1)熱處理過程中的磁性質控制,以及(2)藉由電流翻轉操控磁矩。我們首先研究鈷鉑多層膜的磁性在快速退火時的變化,我們發現此磁性質的變化與薄膜應力的釋放有很強的關聯性,藉由控制微區的應力釋放,我們可以達成所謂”磁圖樣化”的技術來控制微區磁性質。另外,我們也試圖使用電的方式來翻轉鈷鉑多層膜的磁矩,我們先評估了鈷鉑多層膜的自旋軌道力矩效率,發現其與鈷鉑之介面以及鈷鉑多層膜的層數有關。同時我們也成功展示了利用自旋軌道力矩來翻轉鈷鉑多層膜的磁矩,但當多層膜層數增加時,多磁區狀態的形成取代了磁矩完整的翻轉,藉由介面的改質,我們可以在多層膜層數增加時,抑制多磁區狀態的形成。而就由這些工作,我們相信鈷鉑多層膜在真實原件上的適用性可以被改善。
There has been a great interest recently in novel magnetic devices such as magnetic patterned media, magnetic random access memory, and magnetic domain wall devices. However, with the scaling-down of the magnetic devices for the higher storage density, the degradation of thermal stability of the ferromagnetic layers with cell size becomes a severe issue for long-term storage and preservation. Therefore, the ferromagnetic materials with perpendicular magnetic anisotropy (PMA), which provides the better thermal stability due to the higher effective anisotropy, have been introduced to those novel magnetic devices for solving the thermal stability issue. Besides, PMA materials may also reduce the energy barrier for the spin-transfer-torque switching of the magnetic moments, leading to a more efficient reversal. Consequently, to integrate the PMA materials with those magnetic devices is a very important issue for pursuing better performance and smaller devices. The Co/Pt multilayers (MLs) is a kind of PMA materials, where its PMA is originated from the interfacial anisotropy of Co/Pt interfaces. Because the Co/Pt multilayers can be easily fabricated with tunable PMA, it has been widely applied to demonstrate the magnetic devices with PMA. Nevertheless, the magnetic properties of the Co/Pt multilayers are sensitive to the thermal process, which is hard to precise control the magnetic properties. Besides, due to the severe spin depolarization of Pt and the high damping constant, the Co/Pt multilayers is hardly reversed by spin-transfer torque, which limited the adoptability of Co/Pt MLs in real applications.
In this work, we try to solve the problems of Co/Pt MLs in real applications. Two main directions have been focused: (1) precise control of the magnetic properties with the thermal process and (2) manipulation of the magnetization switching by electrical means. We first investigated the magnetic properties modification with rapid thermal annealing. We found the evolution of magnetic properties with thermal process is strongly correlated with the stress relaxation process. By controlling the stress relaxation in local regions, we can locally control the magnetic properties to achieve the so-called magnetic patterning. On the other hand, to find an electrical means for switching the Co/Pt multilayers, we evaluate the spin-orbit-torque efficiency of the Co/Pt multilayers. We found the spin-orbit-torque efficiency of the Co/Pt multilayers is strongly affected by the interface conditions and scaling with the repeating numbers of the multilayers. We also demonstrate the spin-orbit-torque switching on Co/Pt multilayers, where the multi-domain formation is a problem to obstruct the bipolar magnetization switching when repeating layer number is large. By engineering the interfaces, the multi-domain formation can be suppressed to achieve a completely switching with higher repeating layer numbers. As a result, our findings may improve the adoptability of Co/Pt multilayers in real applications.
1. Piramanayagam SN. Perpendicular recording media for hard disk drives. J Appl Phys 102, 011301 (2007).
2. Parkin SSP. GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES. Annu Rev Mater Sci 25, 357-388 (1995).
3. Yuasa S, Djayaprawira DD. Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) barrier. J Phys D-Appl Phys 40, R337-R354 (2007).
4. Parkin SS, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory. Science 320, 190-194 (2008).
5. Neusser S, Grundler D. Magnonics: Spin Waves on the Nanoscale. Adv Mater 21, 2927-2932 (2009).
6. Bhowmik D, You L, Salahuddin S. Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nat Nanotechnol 9, 59-63 (2014).
7. Franken JH, Swagten HJ, Koopmans B. Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy. Nature nanotechnology 7, 499-503 (2012).
8. Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP. Magnetic domain-wall logic. Science 309, 1688-1692 (2005).
9. Kent AD. SPINTRONICS Perpendicular all the way. Nature materials 9, 699-700 (2010).
10. Thomas L, Jan G, Zhu J, Liu HL, Lee YJ, Le S, Tong RY, Pi KY, Wang YJ, Shen DN, He RR, Haq J, Teng J, Lam V, Huang KL, Zhong T, Torng T, Wang PK. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited). J Appl Phys 115, 172615 (2014).
11. Fukami S, Suzuki T, Ohshima N, Nagahara K, Ishiwata N. Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy. J Appl Phys 103, 3 (2008).
12. Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan HD, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nature materials 9, 721-724 (2010).
13. Mangin S, Ravelosona D, Katine JA, Carey MJ, Terris BD, Fullerton EE. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat Mater 5, 210-215 (2006).
14. Barman A, Wang SQ, Hellwig O, Berger A, Fullerton EE, Schmidt H. Ultrafast magnetization dynamics in high perpendicular anisotropy Co/Pt (n) multilayers. J Appl Phys 101, 09d102 (2007).
15. Ne´el L. Anisotropie magne´tique superficielle et surstructures d’orientation. J Physique Rad 15, 225-239 (1954).
16. Carcia PF, Meinhaldt AD, Suna A. PERPENDICULAR MAGNETIC-ANISOTROPY IN PD/CO THIN-FILM LAYERED STRUCTURES. Appl Phys Lett 47, 178-180 (1985).
17. Denbroeder FJA, Kuiper D, Vandemosselaer AP, Hoving W. PERPENDICULAR MAGNETIC-ANISOTROPY OF CO-AU MULTILAYERS INDUCED BY INTERFACE SHARPENING. Phys Rev Lett 60, 2769-2772 (1988).
18. Carcia PF. PERPENDICULAR MAGNETIC-ANISOTROPY IN PD/CO AND PT/CO THIN-FILM LAYERED STRUCTURES. J Appl Phys 63, 5066-5073 (1988).
19. Denbroeder FJA, Janssen E, Mud A, Kerkhof JM. Co/Ni Multilayers with Perpendicular Magnetic-Anisotropy. J Magn Magn Mater 126, 563-568 (1993).
20. Johnson MT, Bloemen PJH, denBroeder FJA, deVries JJ. Magnetic anisotropy in metallic multilayers. Rep Prog Phys 59, 1409-1458 (1996).
21. Chappert C, Bernas H, Ferre J, Kottler V, Jamet JP, Chen Y, Cambril E, Devolder T, Rousseaux F, Mathet V, Launois H. Planar patterned magnetic media obtained by ion irradiation. Science 280, 1919-1922 (1998).
22. Haazen PPJ, Mure E, Franken JH, Lavrijsen R, Swagten HJM, Koopmans B. Domain wall depinning governed by the spin Hall effect. Nat Mater 12, 299-303 (2013).
23. Denbroeder FJA, Hoving W, Bloemen PJH. MAGNETIC-ANISOTROPY OF MULTILAYERS. J Magn Magn Mater 93, 562-570 (1991).
24. Cullity BD, Graham CD. Introduction to Magnetic Materials, 2nd edn. Wiley-IEEE Press (2009).
25. Lin MT, Kuo CC, Her HY, Wu YE, Tsay JS, Shern CS. Giant enhancement of magneto-optical response and increase in perpendicular magnetic anisotropy of ultrathin Co/Pt(111) films upon thermal annealing. J Vac Sci Technol A 17, 3045-3050 (1999).
26. Hashimoto S, Ochiai Y, Aso K. Perpendicular Magnetic-Anisotropy and Magnetostriction of Sputtered Co/Pd and Co/Pt Multilayered Films. J Appl Phys 66, 4909-4916 (1989).
27. Nakajima N, Koide T, Shidara T, Miyauchi H, Fukutani I, Fujimori A, Iio K, Katayama T, Nyvlt M, Suzuki Y. Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular x-ray dichroism study. Phys Rev Lett 81, 5229-5232 (1998).
28. Chen CT, Idzerda YU, Lin HJ, Smith NV, Meigs G, Chaban E, Ho GH, Pellegrin E, Sette F. EXPERIMENTAL CONFIRMATION OF THE X-RAY MAGNETIC CIRCULAR-DICHROISM SUM-RULES FOR IRON AND COBALT. Phys Rev Lett 75, 152-155 (1995).
29. Knepper JW, Yang FY. Oscillatory interlayer coupling in Co/Pt multilayers with perpendicular anisotropy. Phys Rev B 71, 224403 (2005).
30. Weller D, Farrow RFC, Marks RF, Harp GR, Notarys H, Gorman G. INTERFACE AND VOLUME ANISOTROPY OF MBE-GROWN CO/PT (111), (110) AND (001) AND SPUTTERED CO/PT MULTILAYERS. In: Magnetic Ultrathin Films: Multilayers and Surfaces, Interfaces and Characterization (ed^(eds Jonker BT, et al.) (1993).
31. Carcia PF, Li ZG, Vankesteren HW, Johnson MT. HETEROEPITAXIAL GROWTH OF PT/CO MULTILAYERS ON SINGLE-CRYSTAL ZNO. J Magn Magn Mater 145, 231-238 (1995).
32. Li ZG, Carcia PF. MICROSTRUCTURAL DEPENDENCE OF MAGNETIC-PROPERTIES OF PT/CO MULTILAYER THIN-FILMS. J Appl Phys 71, 842-848 (1992).
33. Bandiera S, Sousa RC, Rodmacq B, Dieny B. Enhancement of perpendicular magnetic anisotropy through reduction of Co-Pt interdiffusion in (Co/Pt) multilayers. Appl Phys Lett 100, 142410 (2012).
34. Bandiera S, Sousa RC, Rodmacq B, Dieny B. Asymmetric Interfacial Perpendicular Magnetic Anisotropy in Pt/Co/Pt Trilayers. IEEE Magn Lett 2, 3000504 (2011).
35. Denbroeder FJA, Kuiper D, Draaisma HJG. Effects of Annealing and Ion-Implantation on the Magnetic-Properties of Pd/Co Multilayers Containing Ultrathin Co. IEEE Trans Magn 23, 3696-3698 (1987).
36. Das T, Kulkarni PD, Purandare SC, Barshilia HC, Bhattacharyya S, Chowdhury P. Anomalous enhancement in interfacial perpendicular magnetic anisotropy through uphill diffusion. Scientific reports 4, 5328 (2014).
37. Yakushiji K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Ando K. Ultrathin Co/Pt and Co/Pd superlattice films for MgO-based perpendicular magnetic tunnel junctions. Appl Phys Lett 97, 232508 (2010).
38. Zeper WB, Greidanus F, Carcia PF. EVAPORATED CO/PT LAYERED STRUCTURES FOR MAGNETO-OPTICAL RECORDING. IEEE Trans Magn 25, 3764-3766 (1989).
39. Ishikawa S, Sato H, Yamanouchi M, Ikeda S, Fukami S, Matsukura F, Ohno H. Co/Pt multilayer-based magnetic tunnel junctions with a CoFeB/Ta insertion layer. J Appl Phys 115, 17c719 (2014).
40. Emori S, Umachi CK, Bono DC, Beach GSD. Generalized analysis of thermally activated domain-wall motion in Co/Pt multilayers. J Magn Magn Mater 378, 98-106 (2015).
41. Garcia F, Fettar F, Auffret S, Rodmacq B, Dieny B. Exchange-biased spin valves with perpendicular magnetic anisotropy based on (Co/Pt) multilayers. J Appl Phys 93, 8397-8399 (2003).
42. Sort J, Baltz V, Garcia F, Rodmacq B, Dieny B. Tailoring perpendicular exchange bias in Pt/Co -IrMn multilayers. Phys Rev B 71, 054411 (2005).
43. Ducruet C, Carvello B, Rodmacq B, Auffret S, Gaudin G, Dieny B. Magnetoresistance in Co/Pt based magnetic tunnel junctions with out-of-plane magnetization. J Appl Phys 103, 07a918 (2008).
44. Park JH, Park C, Jeong T, Moneck MT, Nufer NT, Zhu JG. Co/Pt multilayer based magnetic tunnel junctions using perpendicular magnetic anisotropy. J Appl Phys 103, 07a917 (2008).
45. Lee YM, Hayakawa J, Ikeda S, Matsukura F, Ohno H. Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl Phys Lett 90, 212507 (2007).
46. Ishikawa S, Sato H, Yamanouchi M, Ikeda S, Fukami S, Matsukura F, Ohno H. Magnetic properties of MgO- Co/Pt multilayers with a CoFeB insertion layer. J Appl Phys 113, 17c721 (2013).
47. Jung SW, Kim W, Lee TD, Lee KJ, Lee HW. Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy. Appl Phys Lett 92, 202508 (2008).
48. Fukami S, Suzuki T, Ohshima N, Nagahara K, Ishiwata N. Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy. J Appl Phys 103, 07e718 (2008).
49. Koyama T, Yamada G, Tanigawa H, Kasai S, Ohshima N, Fukami S, Ishiwata N, Nakatani Y, Ono T. Control of Domain Wall Position by Electrical Current in Structured Co/Ni Wire with Perpendicular Magnetic Anisotropy. Appl Phys Express 1, 101303 (2008).
50. Heinen J, Boulle O, Rousseau K, Malinowski G, Klaeui M, Swagten HJM, Koopmans B, Ulysse C, Faini G. Current-induced domain wall motion in Co/Pt nanowires: Separating spin torque and Oersted-field effects. Appl Phys Lett 96, 202510 (2010).
51. Ryu KS, Thomas L, Yang SH, Parkin S. Chiral spin torque at magnetic domain walls. Nat Nanotechnol 8, 527-533 (2013).
52. Emori S, Bauer U, Ahn SM, Martinez E, Beach GSD. Current-driven dynamics of chiral ferromagnetic domain walls. Nat Mater 12, 611-616 (2013).
53. Ross C. Patterned magnetic recording media. Ann Rev Mater Res 31, 203-235 (2001).
54. Devolder T. Light ion irradiation of Co/Pt systems: Structural origin of the decrease in magnetic anisotropy. Phys Rev B 62, 5794-5802 (2000).
55. McCord J, Schultz L, Fassbender J. Hybrid soft-magnetic lateral exchange spring films prepared by ion irradiation. Adv Mater 20, 2090-2093 (2008).
56. Bali R, Wintz S, Meutzner F, Hubner R, Boucher R, Unal AA, Valencia S, Neudert A, Potzger K, Bauch J, Kronast F, Facsko S, Lindner J, Fassbender J. Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism. Nano Lett 14, 435-441 (2014).
57. Menendez E, Liedke MO, Fassbender J, Gemming T, Weber A, Heyderman LJ, Rao KV, Deevi SC, Surinach S, Baro MD, Sort J, Nogues J. Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys. Small 5, 229-234 (2009).
58. Kim S, Lee S, Ko J, Son J, Kim M, Kang S, Hong J. Nanoscale patterning of complex magnetic nanostructures by reduction with low-energy protons. Nature nanotechnology 7, 567-571 (2012).
59. Kim S, Lee S, Hong J. An array of ferromagnetic nanoislands nondestructively patterned via a local phase transformation by low-energy proton irradiation. ACS Nano 8, 4698-4704 (2014).
60. Sort J, Concustell A, Menendez E, Surinach S, Rao KV, Deevi SC, Baro MD, Nogues J. Periodic arrays of micrometer and sub-micrometer magnetic structures prepared by nanoindentation of a nonmagnetic intermetallic compound. Adv Mater 18, 1717-1720 (2006).
61. Zheng M, Yu M, Liu Y, Skomski R, Liou SH, Sellmyer DJ, Petryakov VN, Verevkin YK, Polushkin NI, Salashchenko NN. Magnetic nanodot arrays produced by direct laser interference lithography. Appl Phys Lett 79, 2606-2608 (2001).
62. Hayashi M, Yamanouchi M, Fukami S, Sinha J, Mitani S, Ohno H. Spatial control of magnetic anisotropy for current induced domain wall injection in perpendicularly magnetized CoFeB vertical bar MgO nanostructures. Appl Phys Lett 100, 192411 (2012).
63. Dumas-Bouchiat F, Zanini LF, Kustov M, Dempsey NM, Grechishkin R, Hasselbach K, Orlianges JC, Champeaux C, Catherinot A, Givord D. Thermomagnetically patterned micromagnets. Appl Phys Lett 96, 102511 (2010).
64. Obry B, Pirro P, Bracher T, Chumak AV, Osten J, Ciubotaru F, Serga AA, Fassbender J, Hillebrands B. A micro-structured ion-implanted magnonic crystal. Appl Phys Lett 102, 202403 (2013).
65. Urbaniak M, Kuswik P, Kurant Z, Tekielak M, Engel D, Lengemann D, Szymanski B, Schmidt M, Aleksiejew J, Maziewski A, Ehresmann A, Stobiecki F. Domain-Wall Movement Control in Co/Au Multilayers by He+-Ion-Bombardment- Induced Lateral Coercivity Gradients. Phys Rev Lett 105, 067202 (2010).
66. Phung T, Pushp A, Thomas L, Rettner C, Yang SH, Ryu KS, Baglin J, Hughes B, Parkin S. Highly Efficient In-Line Magnetic Domain Wall Injector. Nano Letters 15, 835-841 (2015).
67. Franken JH, Hoeijmakers M, Lavrijsen R, Kohlhepp JT, Swagten HJM, Koopmans B, van Veldhoven E, Maas DJ. Precise control of domain wall injection and pinning using helium and gallium focused ion beams. J Appl Phys 109, 07d504 (2011).
68. Donolato M, Vavassori P, Gobbi M, Deryabina M, Hansen MF, Metlushko V, Ilic B, Cantoni M, Petti D, Brivio S, Bertacco R. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits. Adv Mater 22, 2706-2710 (2010).
69. Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189-193 (2011).
70. Liu LQ, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science 336, 555-558 (2012).
71. Miron IM, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater 9, 230-234 (2010).
72. Liu LQ, Lee OJ, Gudmundsen TJ, Ralph DC, Buhrman RA. Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect. Phys Rev Lett 109, 096602 (2012).
73. Cubukcu M, Boulle O, Drouard M, Garello K, Avci CO, Miron IM, Langer J, Ocker B, Gambardella P, Gaudin G. Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl Phys Lett 104, 042406 (2014).
74. Bychkov YA, Rashba EI. OSCILLATORY EFFECTS AND THE MAGNETIC-SUSCEPTIBILITY OF CARRIERS IN INVERSION-LAYERS. Journal of Physics C-Solid State Physics 17, 6039-6045 (1984).
75. Miron IM, Moore T, Szambolics H, Buda-Prejbeanu LD, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat Mater 10, 419-423 (2011).
76. Hirsch JE. Spin Hall effect. Phys Rev Lett 83, 1834-1837 (1999).
77. Dyakonov MI, Perel VI. CURRENT-INDUCED SPIN ORIENTATION OF ELECTRONS IN SEMICONDUCTORS. Phys Lett A A 35, 459 (1971).
78. Zhang SF. Spin Hall effect in the presence of spin diffusion. Phys Rev Lett 85, 393-396 (2000).
79. Kato YK, Myers RC, Gossard AC, Awschalom DD. Observation of the spin hall effect in semiconductors. Science 306, 1910-1913 (2004).
80. Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S. Room-temperature reversible spin Hall effect. Phys Rev Lett 98, 156601 (2007).
81. Lee KS, Lee SW, Min BC, Lee KJ. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl Phys Lett 102, 112410 (2013).
82. Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H. Layer thickness dependence of the current-induced effective field vector in Ta vertical bar CoFeB vertical bar MgO. Nat Mater 12, 240-245 (2013).
83. Hayashi M, Kim J, Yamanouchi M, Ohno H. Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys Rev B 89, 144425 (2014).
84. Liu L, Moriyama T, Ralph DC, Buhrman RA. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys Rev Lett 106, 036601 (2011).
85. Pai CF, Liu LQ, Li Y, Tseng HW, Ralph DC, Buhrman RA. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl Phys Lett 101, 122404 (2012).
86. Niimi Y, Morota M, Wei DH, Deranlot C, Basletic M, Hamzic A, Fert A, Otani Y. Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper. Phys Rev Lett 106, 126601 (2011).
87. Niimi Y, Kawanishi Y, Wei DH, Deranlot C, Yang HX, Chshiev M, Valet T, Fert A, Otani Y. Giant Spin Hall Effect Induced by Skew Scattering from Bismuth Impurities inside Thin Film CuBi Alloys. Phys Rev Lett 109, 156602 (2012).
88. Gu B, Sugai I, Ziman T, Guo GY, Nagaosa N, Seki T, Takanashi K, Maekawa S. Surface-Assisted Spin Hall Effect in Au Films with Pt Impurities. Phys Rev Lett 105, 216401 (2010).
89. Laczkowski P, Rojas-Sanchez JC, Savero-Torres W, Jaffres H, Reyren N, Deranlot C, Notin L, Beigne C, Marty A, Attane JP, Vila L, George JM, Fert A. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy. Appl Phys Lett 104, 142403 (2014).
90. Fujiwara K, Fukuma Y, Matsuno J, Idzuchi H, Niimi Y, Otani Y, Takagi H. 5d iridium oxide as a material for spin-current detection. Nat Commun 4, 2893 (2013).
91. Torrejon J, Kim J, Sinha J, Mitani S, Hayashi M, Yamanouchi M, Ohno H. Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nat Commun 5, 4655 (2014).
92. Zhang W, Jungfleisch MB, Jiang WJ, Pearson JE, Hoffmann A, Freimuth F, Mokrousov Y. Spin Hall Effects in Metallic Antiferromagnets. Phys Rev Lett 113, 196602 (2014).
93. Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang L-T, Montazeri M, Yu G, Jiang W, Nie T, Schwartz RN, Tserkovnyak Y, Wang KL. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat Mater 13, 699-704 (2014).
94. Mellnik AR, Lee JS, Richardella A, Grab JL, Mintun PJ, Fischer MH, Vaezi A, Manchon A, Kim EA, Samarth N, Ralph DC. Spin-transfer torque generated by a topological insulator. Nature 511, 449 (2014).
95. Rojas-Sanchez JC, Reyren N, Laczkowski P, Savero W, Attane JP, Deranlot C, Jamet M, George JM, Vila L, Jaffres H. Spin Pumping and Inverse Spin Hall Effect in Platinum: The Essential Role of Spin-Memory Loss at Metallic Interfaces. Phys Rev Lett 112, 106602 (2014).
96. Zhang W, Han W, Jiang X, Yang S-H, S. P. Parkin S. Role of transparency of platinum–ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect. Nature Physics 11, 496-502 (2015).
97. Pai CF, Y. O, Ralph DC, Buhrman RA. Dependence of the Efficiency of Spin Hall Torque on the Transparency of Pt-Ferromagnetic Layer Interfaces. arXiv:1411.3379
98. Deorani P, Yang H. Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in Ta/Cu/Py structures. Appl Phys Lett 103, 232408 (2013).
99. Scanning Transmission Electron Microscopy: Imaging and Analysis. Springer (2011).
100. Pommier J, Meyer P, Penissard G, Ferre J, Bruno P, Renard D. Magnetization Reversal in Ultrathin Ferromagnetic-Films with Perpendicular Anisotropy - Domain Observations. Phys Rev Lett 65, 2054-2057 (1990).
101. Victora RH, Willoughby SD, MacLaren JM, Xue JH. Effects of grain boundaries on magnetic properties of recording media. IEEE Trans Magn 39, 710-715 (2003).
102. Kelly PE, Ogrady K, Mayo PI, Chantrell RW. Switching Mechanisms in Cobalt-Phosphorus Thin-Films. IEEE Trans Magn 25, 3880-3883 (1989).
103. Wu XW, van de Veerdonk RJM, Chantrell RW, Weller D. Delta M study of perpendicular recording media. J Appl Phys 93, 6760-6762 (2003).
104. Zhang HW, Rong CB, Du XB, Zhang J, Zhang SY, Shen BG. Investigation on intergrain exchange coupling of nanocrystalline permanent magnets by Henkel plot. Appl Phys Lett 82, 4098-4100 (2003).
105. Igarashi M, Hara M, Nakamura A, Sugita Y. Micromagnetic simulation of magnetic cluster, thermal activation volume, and medium noise in perpendicular recording media. IEEE Trans Magn 39, 1897-1901 (2003).
106. Piramanayagam SN, Srinivasan K. Recording media research for future hard disk drives. J Magn Magn Mater 321, 485-494 (2009).
107. Skomski R. Nanomagnetics. J Phys-Condes Matter 15, R841-R896 (2003).
108. Greaves SJ, Muraoka H, Sugita Y, Nakamura Y. Intergranular exchange pinning effects in perpendicular recording media. IEEE Trans Magn 35, 3772-3774 (1999).
109. Zablotskii V, Ferre J, Maziewski A. Model for domain wall pinning by randomly distributed nanosized defects in ultrathin magnetic films. J Phys D-Appl Phys 42, 125001 (2009).
110. Schuller I. New Class of Layered Materials. Phys Rev Lett 44, 1597-1600 (1980).
111. Janssen GCAM, Abdalla MM, van Keulen F, Pujada BR, van Venrooy B. Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 517, 1858-1867 (2009).
112. Thornton JA, Hoffman DW. Stress-Related Effects in Thin-Films. Thin Solid Films 171, 5-31 (1989).
113. Vinci RP, Zielinski EM, Bravman JC. Thermal Strain and Stress in Copper Thin-Films. Thin Solid Films 262, 142-153 (1995).
114. Hyun S, Vinci RP, Fahey KP, Clemens BM. Effect of grain structure on the onset of diffusion-controlled stress relaxation in Pt thin films. Appl Phys Lett 83, 2769-2771 (2003).
115. Hazzledine PM, Schneibel JH. Theory of Coble Creep for Irregular Grain Structures. Acta Metall Mater 41, 1253-1262 (1993).
116. Weller D, Folks L, Best M, Fullerton EE, Terris BD, Kusinski GJ, Krishnan KM, Thomas G. Growth, structural, and magnetic properties of high coercivity Co/Pt multilayers. J Appl Phys 89, 7525-7527 (2001).
117. Geissler M, Xia YN. Patterning: Principles and some new developments. Adv Mater 16, 1249-1269 (2004).
118. Terris BD, Thomson T. Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D-Appl Phys 38, R199-R222 (2005).
119. Lai CH, Yang CH, Chiang CC. Ion-irradiation-induced direct ordering of L1(0) FePt phase. Appl Phys Lett 83, 4550-4552 (2003).
120. Fassbender J, McCord J. Magnetic patterning by means of ion irradiation and implantation. J Magn Magn Mater 320, 579-596 (2008).
121. Li SP, Lew WS, Bland JA, Lopez-Diaz L, Vaz CA, Natali M, Chen Y. Magnetic domain confinement by anisotropy modulation. Phys Rev Lett 88, 087202 (2002).
122. Gutfleisch O, Willard MA, Bruck E, Chen CH, Sankar SG, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23, 821-842 (2011).
123. Wang KL, Alzate JG, Amiri PK. Low-power non-volatile spintronic memory: STT-RAM and beyond. J Phys D-Appl Phys 46, 074003 (2013).
124. Gan DW, Ho PS, Huang R, Leu J, Maiz J, Scherban T. Isothermal stress relaxation in electroplated Cu films. I. Mass transport measurements. J Appl Phys 97, 103531 (2005).
125. Chang CY, Vook RW. The Effect of Surface Aluminum-Oxide Films on Thermally-Induced Hillock Formation. Thin Solid Films 228, 205-209 (1993).
126. Roder H, Schuster R, Brune H, Kern K. Monolayer-Confined Mixing at the Ag-Pt(111) Interface. Phys Rev Lett 71, 2086-2089 (1993).
127. Firebaugh SL, Jensen KF, Schmidt MA. Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus. J Microelectromech S 7, 128-135 (1998).
128. Zhao ZL, Ding J, Inaba K, Chen JS, Wang JP. Promotion of L1(0) ordered phase transformation by the Ag top layer on FePt thin films. Appl Phys Lett 83, 2196-2198 (2003).
129. Jin ZQ, Liu JP. Rapid thermal processing of magnetic materials. J Phys D-Appl Phys 39, R227-R244 (2006).
130. Yamane H, Maeno Y, Kobayashi M. Annealing Effects on Multilayered Co/Pt and Co/Pd Sputtering Films. Appl Phys Lett 62, 1562-1564 (1993).
131. Brataas A, Kent AD, Ohno H. Current-induced torques in magnetic materials. Nat Mater 11, 372-381 (2012).
132. Ralph DC, Stiles MD. Spin transfer torques. J Magn Magn Mater 320, 1190-1216 (2008).
133. Wang WG, Li MG, Hageman S, Chien CL. Electric-field-assisted switching in magnetic tunnel junctions. Nat Mater 11, 64-68 (2012).
134. Shiota Y, Nozaki T, Bonell F, Murakami S, Shinjo T, Suzuki Y. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat Mater 11, 39-43 (2012).
135. Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater 10, 853-856 (2011).
136. Hoffmann A. Spin Hall Effects in Metals. IEEE Trans Magn 49, 5172-5193 (2013).
137. Pai CF, Nguyen MH, Belvin C, Vilela-Leao LH, Ralph DC, Buhrman RA. Enhancement of perpendicular magnetic anisotropy and transmission of spin-Hall-effect-induced spin currents by a Hf spacer layer in W/Hf/CoFeB/MgO layer structures. Appl Phys Lett 104, 082407 (2014).
138. Jamali M, Narayanapillai K, Qiu X, Loong LM, Manchon A, Yang H. Spin-orbit torques in Co/Pd multilayer nanowires. Phys Rev Lett 111, 246602 (2013).
139. Pi UH, Kim KW, Bae JY, Lee SC, Cho YJ, Kim KS, Seo S. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl Phys Lett 97, 162507 (2010).
140. Haney PM, Lee HW, Lee KJ, Manchon A, Stiles MD. Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling. Phys Rev B 87, 174411 (2013).
141. Sim CH, Huang JC, Tran M, Eason K. Asymmetry in effective fields of spin-orbit torques in Pt/Co/Pt stacks. Appl Phys Lett 104, 012408 (2014).
142. Du CH, Wang HL, Yang FY, Hammel PC. Enhancement of Pure Spin Currents in Spin Pumping Y3Fe5O12/Cu/Metal Trilayers through Spin Conductance Matching. Phys Rev Appl 1, 044004 (2014).
143. Emori S, Nan TX, Oxholm TM, Boone CT, Jones JG, Howe BM, Brown GJ, Budil DE, Sun NX. Quantification of the spin-Hall anti-damping torque with a resonance spectrometer. Appl Phys Lett 106, 022406 (2015).
144. Piraux L, Dubois S, Fert A, Belliard L. The temperature dependence of the perpendicular giant magnetoresistance in Co/Cu multilayered nanowires. Eur Phys J B 4, 413-420 (1998).
145. Sun JZ, Trouilloud PL, Gajek MJ, Nowak J, Robertazzi RP, Hu G, Abraham DW, Gaidis MC, Brown SL, O'Sullivan EJ, Gallagher WJ, Worledge DC. Size dependence of spin-torque induced magnetic switching in CoFeB-based perpendicular magnetization tunnel junctions (invited). J Appl Phys 111, 07c711 (2012).
146. Kawahara T, Ito K, Takemura R, Ohno H. Spin-transfer torque RAM technology: Review and prospect. Microelectron Reliab 52, 613-627 (2012).
147. Rowlands GE, Rahman T, Katine JA, Langer J, Lyle A, Zhao H, Alzate JG, Kovalev AA, Tserkovnyak Y, Zeng ZM, Jiang HW, Galatsis K, Huai YM, Amiri PK, Wang KL, Krivorotov IN, Wang JP. Deep subnanosecond spin torque switching in magnetic tunnel junctions with combined in-plane and perpendicular polarizers. Appl Phys Lett 98, 102509 (2011).
148. Je SG, Kim DH, Yoo SC, Min BC, Lee KJ, Choe SB. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction. Phys Rev B 88, 214401 (2013).
149. Perez N, Martinez E, Torres L, Woo SH, Emori S, Beach GSD. Chiral magnetization textures stabilized by the Dzyaloshinskii-Moriya interaction during spin-orbit torque switching. Appl Phys Lett 104, 092403 (2014).
150. Agrawal P, Bauer U, Beach GSD. Spontaneous domain nucleation under in-plane fields in ultrathin films with Dzyaloshinskii-Moriya interaction. J Appl Phys 117, 17C744 (2015).
151. Hrabec A, Porter NA, Wells A, Benitez MJ, Burnell G, McVitie S, McGrouther D, Moore TA, Marrows CH. Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films. Phys Rev B 90, 020402 (2014).
152. Emori S, Martinez E, Lee KJ, Lee HW, Bauer U, Ahn SM, Agrawal P, Bono DC, Beach GSD. Spin Hall torque magnetometry of Dzyaloshinskii domain walls. Phys Rev B 90, 184427 (2014).