研究生: |
陳國棟 Gou-Dung Chen |
---|---|
論文名稱: |
無電鍍鎢磷化鈷催化劑成分及結構對用於連線之碳奈米線成長之影響 The Effect of Composition and Structure of Electroless CoWP Catalyst on Carbon Nanowire Growth for Interconnect Application |
指導教授: |
游萃蓉
Tri-Rung Yew |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 鎢磷化鈷 、無電鍍 、半導體連線 |
外文關鍵詞: | CoWP, electroless plating, interconnect |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用調配鎢磷化鈷(CoWP)催化劑成分及結構,以及改變無電鍍的成長條件,來增加碳奈米線成長的密度,做為半導體連線(interconnect)。在此,選用Cu / Ti / SiO2基座來調配CoWP,以及TSMC提供之含有下銅導線及直徑約70 nm大小之連接窗口(via-hole)之晶片,以作為成長碳奈米線via用的基座及後續電性量測。在無電鍍鎢磷化鎢方面,本研究改變酸鹼值(pH),電鍍的溫度、及時間,進而改變沉積鎢磷化鎢的表面形貌及成分,以達到成長高密度碳奈米線的目的,此外,亦利用,改變鎢在無電鍍溶液中的濃度(0 - 0.18 mol/L),來調配CoWP成分,進而探討其對碳奈米線成長的影響。隨後利用本實驗室(BNE Lab)的化學氣相沉積系統,以乙炔(C2H2)為氣源,以氬氣(Ar)稀釋及以氫氣(H2)為活化催化劑,在分壓為0.05-2.5 Torr,≦400 oC下成長碳奈米線,經過不斷的實驗,來調配出成長奈米線的最佳化條件,其碳奈米線密度可達1.1x1011 / cm2
而在電性量測方面,則在上下之via上,利用聚焦離子束電子顯微鏡沈積白金(Pt),作為量測用的電極,隨後再利用多探針奈米電性量測系統量測奈米線via的電性。目前可量到的via阻值為7.2k Ω / via。此阻值仍偏高,須進一步改進,以達半導體金屬連線之需求。
This work is focused on the optimization on the composition and structure of electroless CoWP catalyst to enhance the carbon nanowire growth for interconnect application. The blanket (Cu/Ti/SiO2/Si) wafers were used to optimize the electroless plating process of CoWP for carbon nano-wire (CNW) growth. The structure wafers (provided by TSMC) with 70 nm via and Cu line underneath were used to measure via- resistance after CNW growth. The pH value, plating temperature, and plating time were optimized to modify the morphology of CoWP for CNW growth. Besides, the effect of W concentration on CNW growth was also investigated. The CNWs were grown by the chemical vapor deposition (CVD) at 400 oC, using C2H2 as a reaction gas at 0.05 – 2.5 Torr with Ar as a carrier gas and H2 to activate the catalyst.
For CNW-via resistance measurement, Pt was deposited on the CNW-via by focus-ion-beam technique. The CNW-via resistance was measured by Multi-Probe Nano-Electronics Measurement (MPNEM) system. The ohmic behavior and a resistance of 7.2k Ω/via of CNW-vias was measured, which needs further improvement for future interconnect application.
[1] H. Cho, K.H. Koo, P. Kapur, and K. C. Saraswat, IITC (2007) 135
[2] M. Horibe, M. Nihei, D. Kondo, A. Kawabata, Y. Awano, Jpn. J. Appl. Phys. 43, 10 (2004) 1856
[3] M. Horibe, M. Nihei, D. Kondo, A. Kawabata, Y. Awano, Jpn. J. Appl. Phys. 44 (2005) 5309
[4] M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato, Y. Awano, Jpn. J. Appl. Phys. 44 (2005) 1626
[5] F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, and W. Honlein, Microelectronic Engineering. 64 (2002) 399
[6] G. S. Duesberg, A. P. Graham, F. Kreupl, M. Ilea, R. Seidel, E. Unger, and W. Honlein, Diamond Relat Mater. 13 (2004) 354
[7] J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han, and M. Meyyappan, Appl. Phys. Lett. 82 (2003) 2491
[8] S. Iijima; Nature, 56 (1991) 354
[9] B. Q. Wei, R. Vajtai, P. M. Ajayan, Appl. Phys. Lett. 79 (2001) 1172
[10] P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett., 87 (2001) 215502
[11] S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science, 280 (1998) 1744
[12] Y. Awano, IEICE TRANS. Electron, 89 (2006) 11
[13] S. Hofmann, M. Cantoro, B. Kleinsorge, C. Casiraghi, A. Parvez, and J. Robertson, J. Appl.phys. 98 (2005) 034308
[14] Y. Y. Wei, Gyula Eres, V. I. Merkulov, and D. H. Lowndes, Appl.Phys. Lett.,78 (2001) 1394
[15] Y. Li, W. Kim, Y. Zhang, M. Roland, D. Wang, and H.Dai, J. Phys. Chem., 105 (2001) 11424
[16] T. Ishigamia, T. Kurokawaa, Y. Kakuhara, IEEE. (2004) 1803
[17] N. Petrov, Y. Sverdlov, and Y. Shacham-Diamand, Journal of The Electrochemical Society, 149 (2002) C187
[18] P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett, 87 (2001) 215502
[19] T. Decorps et al, Microelectronic Engineering, 83 (2006) 2082
[20] C. K. Hu et al, Microelectron. Eng. 70 (2003) 406
[21] A. Kohn, M. Eizenberg, Y. Shacham-Diamand and Y. Sverdlov, Mater. Sci. Eng. A302 (2001) 18
[22] A. Kohn, M. Eizenberg, Y. Shacham-Diamand, J. Appl. Phys 94 (2003) 6
[23] A. Kohn, M. Eizenberg, Y. Shacham-Diamand, Applied Surface Science 212 (2003) 367
[24] M. Horibe, M. Nihei, D. Kondo, A. Kawabata, Y. Awano, Jpn. J. Appl. Phys. 43, 10 (2004) 7337
[25] M. Horibe, M. Nihei, D. Kondo, A. Kawabata, Y. Awano, Jpn. J. Appl. Phys. 44, 10 (2005) 1626
[26] I. Ngo, A. M. Cassell, A. J. Austin, J. Li, S. Krishnan, IEEE Electron Device Letters, 27 (2006) 4
[27] M. Suzuki, Yusuke Ominami, Quoc Ngo, and Cary Y. Yang, Journal of Applied Physics, 101 (2007) 114307
[28] S. Osswald, E.Flahaut, and Y.Gogotsi, Chem. Mater, 18 ( 2006) 1525
[29] J. P´erez-Ram´irez, J.A. Moulijin, Vbrational Spectroscopy, 27 (2001) 75
[30] S. J. Bae, U. k. Kang, O. Dymshits, A. Shashkin, M. Tsenter, A. Zhilin,Journal of Non-Crystalline Solids, 351 (2005) 2969
[31] 林敬二,林宗義,材料分析 美亞書版有限公司 (1994)
[32] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compound, WILEY-INTERSCIENCE (1997)
[33] D. B. Williams and C. B. Carter, Transmission Elecyron Micrscopy, Plenum Press, New York (1996)
[34] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press (1996)
[35] V. R. Shinde, S. B. Mahadik, T. P Gujar, C. D Lokhande, Appl. Surface Science, 252 (2006) 7487
[36] T. C. Tseng, Integration of Self-Aligned Carbon Nanotube Via with Electroless CoWP Catalyst at Low-tempeature (400 ℃) for Future CMOS Interconnect, Master thesis, 2006
[37] C. M. Tsai, Plasma Pretreatment of Catalysts for Carbon Nanotube Interconnect, Master thesis, 2006