簡易檢索 / 詳目顯示

研究生: 龔伯涵
Pol-ham, Kung
論文名稱: PVA-CS水膠製備與組織工程應用之評估
Preparation of PVA-CS hydrogels and its feasibility for tissue engineering
指導教授: 李育德
Yu-der, Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 50
中文關鍵詞: 聚乙烯醇硫酸軟骨素戊二醛組織工程
外文關鍵詞: Poly(vinyl alcohol), PVA, Chondroitin sulfate, CS, Glutaraldehyde, Tissue engineering
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以戊二醛交聯聚乙烯醇(PVA)與硫酸軟骨素(CS)的方式製備水膠,預期所得水膠將兼具兩者之優點,可用作組織工程基材。
    經過紅外線光譜、核磁共振光譜及基材切片的鑑定,PVA-CS水膠應是成功地被製備。從物理性質來看,PVA-CS水膠的澎潤度會隨著CS含量上升;拉力係數則隨著CS含量下降;熱穩定性受到CS的影響略微下降。
    相較於高親水性不易吸引細胞貼附的PVA水膠,PVA-CS水膠不但有利於細胞貼附,還可促進細胞生長,以表現最好的CS20水膠來說,貼附在基材表面的BHK細胞彼此連接增生成緻密細胞層,其細胞數目是PVA水膠的2.56倍,從細胞測試顯示CS能有效地促進細胞在基材表面生長。
    軟骨素能增進細胞與基材間互動,達到促進細胞生長的目的,而PVA本身的強度也提供了基材足以應付體外細胞培養所需的機械性質,由上述測試可知PVA-CS水膠有應用在組織工程的潛力。


    The PVA-CS hydrogels in the research is prepared by use of glutaraldehyde, the cross-linking agent. The obtained hydrogels, holding both advantages of PVA and CS, are expected to be the scaffolds of tissue engineering.
    The PVA-CS hydrogels should be successfully prepared according to the evidence of IR, Solid NMR and the slide of scaffold. In terms of physical properties, the swelling ratio increased as the amount of CS; the addition of CS weakened the scaffold and led to the smaller stretching modulus; the heat stability of PVA-CS slightly dropped as compared with PVA.
    The PVA-CS hydrogels not only promote cell adsorption, but also cell growth. The cells adhered to the CS20 hydrogel connected together and formed a dense sheet of cells. The cell number of CS20 hydrogel was 2.56 times PVA hydrogel, hydrophilic and unfavorable for cell adhesion. Cell test shows that CS involved in the scaffolds effectively promote the growth of BHK cells on the surface.
    CS really enhances the interaction between cells and scaffold and reaches the goal of promoting cell growth. Further, the strength of PVA itself also affords the scaffolds enough mechanical properties for cell culture in vitro. As a result of tests above, the PVA-CS hydrogels have the potential for tissue engineering.

    目錄 第一章 緒論……………………………………………………………..1 第二章 文獻回顧………………………………………………………..3 2.1水膠簡介………………………………………………………...3 2.1.1 水膠之歷史與定義………………………………………3 2.1.2功能性水膠……………………………………………….6 A. 溫度敏感性材料……………………………………….6 B. 酸鹼敏感性水膠……………………………………….8 C. 電致動高分子………………………………………….8 D. 光敏感性高分子……………………………………….9 E. 葡萄糖敏感性高分子………………………………….9 2.1.3 水膠在組織工程之應用………………………………..13 2.2 硫酸軟骨素……………………………………………………16 第三章 研究動機與目的………………………………………………19 第四章 實驗程序與方法………………………………………………20 4.1試藥與溶劑…………………………………………………….20 4.2實驗儀器與設備……………………………………………….21 4.3 實驗方法與流程………………………………………………22 4.3.1實驗流程圖……………………………………………...22 4.3.2 製備PVA-CS共聚物………………………………….23 4.4 測試與分析方法……………………………………………...26 1. 紅外線光譜儀測試 (IR)………………………………….26 2. 固態核磁共振儀測試 (Solid-NMR)……………………..26 3. 澎潤度測試 (Swelling ratio)……………………………..26 4. 熱重損失測試 (TGA)……………………………………26 5. 拉力測試………………………………………………….27 6. CS含量測試……………………………………………...27 7. 細胞測試 (Cell test) ……………………………………..28 第五章 結果與討論………………………………………..…………30 5.1 結構鑑定(Characterization)………………………………….30 5.1.1 PVA-CS共聚物紅外線光譜…………………………...30 5.1.2 PVA-CS共聚物固態核磁共振光譜…………………...32 5.1.3 硫酸軟骨素分光光度計定量法……………………….36 5.1.4 基材切片……………………..…………………..…….36 5.2 物理性質……………………………………………………..39 5.2.1 熱重損失測試………………………………................39 5.2.2 拉力測試……………………………………………….39 5.2.3 澎潤度測試……………………………………………..41 5.3 細胞測試………….…..………………………………………43 第六章 結論……...………………………….…………………………47 Reference………………………………………………………………..48 表目錄 表一 用作水膠之親水性高分子種類………………………….……..4 表二 聚乙烯醇與軟骨素交聯反應配方表…………………….……..25 表三 PVA-CS共聚物CS含量推算值……………………….….……37 圖目錄 圖 2-1物理性&化學性水膠…………………………………………..4 圖 2-2溫度敏感型高分子(PNIPAAm)可逆式型態變化圖…………..7 圖 2-3電致動高分子施加電場後彎曲圖……………………………..7 圖 2-4光敏感性水膠於電場下照光彎曲圖…………………………..10 圖 2-5 DDOPBA-Glucose complex……………………………………12 圖 2-6 硫酸軟骨素結構圖:(a) CS(4s), (b) CS(6s)………………….18 圖4-1 聚乙烯醇與硫酸軟骨素交聯反應示意圖…………………..24 圖 5-1 PVA-CS共聚物紅外線光譜圖…………………………………31 圖 5-2 PVA-CS共聚物固態核磁共振光譜 (a)CS00, (b)CS05……….33 圖 5-2 PVA-CS共聚物固態核磁共振光譜 (c)CS10, (d)CS15……….34 圖 5-2 PVA-CS共聚物固態核磁共振光譜 (e)CS20, (f)pure CS…….35 圖5-3 CS分光光度計檢量線……………………………………….37 圖 5-4 PVA-CS水膠切片Safranin O染色圖(a)CS00, (b)CS01, (c)CS05, (d)CS10, (e)CS15, (f)CS20……………………..………………………38 圖 5-5 PVA-CS共聚物熱重損失圖……………………………………40 圖 5-6 PVA-CS薄膜拉力-形變圖……………………………………..40 圖 5-7 PVA-CS薄膜之拉力係數………………………………………42 圖 5-8 PVA-CS水膠澎潤度變化圖……………………………………42 圖 5-9 PVA-CS基材培養BHK細胞第三天生長情形 (X200) (a)CS00, (b)CS01, (c)CS05, (d)CS10, (e)CS20, (f)Control………………………44 圖 5-10 PVA-CS基材經三天培養後細胞數目………………………..46 圖 5-11 BHK細胞在CS20基材上培養一星期時SEM圖…………..46

    1. 陳進富. “淺談水膠在生醫之應用”. 化工科技與商情 38 (2002) 38-43.
    2. 張學曾. “智慧型水膠及其生醫應用潛力”. 化工科技與商情40 (2003) 62-69.
    3. Bali. J. P., Cousse, H., Neuzil, E. S. “Biochemical basis of the Pharmacologic action of chondroitin sulfates on the osteoarticular system.” Arthritis. Rheum. 31(2001) 58-68.
    4. Barkalow, F. J. and Schwarzbauer, J. E. “Interactions between fibro- nectin and chondroitin sulfate are modulated by molecular context.” J. Biol. Chem. 269 (1994) 3957-3962.
    5. Farndale, R. W., Buttle, D. J., Barrett, A. “Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethyl- methylene blue.” J. Biochim. Biophys. Acta. 883 (1986) 173-7.
    6. Griffith, L. G. “Polymeric biomaterials.” Acta mater. 48 (2000) 263~ 277
    7. Hoffman, A. S. “Hydrogels for biomedical applications.” Adv. Drug Delivery Reviews 43 (2002) 3–12.
    8. Irie, M. “Photoresponsive polymers reversible bending of rod-Shaped acrylamide gels in an electric field.” Macromolecules 19 (1986) 2890- 2892.
    9. Jensen, M., Hansen, P. B., Murdan, S., Frokjaer, S. and Florence, A. T. “Loading into and electro-stimulated release of peptides and proteins from chondroitin-4-sulphate hydrogels.” Euro. J. Pharm. Sci. 15 (2002) 139-148.
    10. Kim, J. H., Mia, B. R., Lee, K. B., Won, J. and Kang, Y. S. “Coordina- tion structure of various ligands in crosslinked PVA to silver ions for facilitated olefin transport.” Chem. Commun. 22 (2002) 2732-2733.
    11. Kim, S. J., Lee, K. J., Kim, S. I., Lee, Y. M., Chung, T. D., and Lee, S. H. “Electrochemical behavior of an interpenetrating polymer network hydrogel composed of poly(propylene glycol) and poly(acrylic acid).” J Appl. Polym. Sci. 89 (2003) 2301-2305.
    12. Kirker, K. R., Luo, Y., Nielson, J. H., Shelby, J., Prestwich, G. D. “Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing.” Biomaterials 23 (2002) 3661-3671.
    13. Lee. K. Y., and Mooney, D. J. “Hydrogels for tissue engineering.” Chem. Revs. 101 (2001) 1869-1879.
    14. Li, Q., Williams, C. G., Sun, D. D. N., Wang, J., Leong, K., Elisseeff, J. H. “Photocrosslinkable polysaccharides based on chondroitin sulfate” J. Biomed. Mater. Res. 68 (2004) 28–33.
    15. Margolis, R.U., Margolis, R.K. “Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding.” Cell Tissue Res. 290 (1997) 343-348.
    16. Martens, P.& Anseth, K. S. “ Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers.” Polymer 41 (2000) 7715-7722.
    17. Martens, P., Holland, T., Anseth, K. S. “Synthesis and character- ization of degradable hydrogels formed from acrylate modified poly- (vinyl alcohol) macromers.” Polymer 43 (2002) 6093–6100.
    18. Matsumoto, A., Ikeda, S., Harada, A., and Kataoka, K. “Glucose- responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions.” Biomacromolecules 4 (2003) 1410-1416.
    19. Min, B. H., Lim, H. and Park, S. R. “Characterization of subpopulated articular chondrocytes separated by percoll density gradient.” In vitro Biology J. 38 (2004) 35-40.
    20. Nonaka, T., Ogata, T., Kurihara, S. “Preparation of poly(vinyl alcohol) -graft-N-isopropylacrylamide copolymer membranes and permeation of solutes through the membranes.” J. Appl. Polym. Sci. 52 (1994)951-957.
    21. Nuttelman, C. R., Mortisen, D. J., Henry, S. M. and Anseth, K. S. “ Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration.” J. Biomed. Mater. Res. 57 (2001) 217-223.
    22. Nuttelman, C. R., Henry, S. M and Anseth, K. S. “Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol) based tissue engineering scaffolds.” Biomaterials 23 (2002) 3617- 3622.
    23. Okano, T., Kikuchi, A., Sakurai, Y., Takei, Y. and Ogata, N. “Temperature-responsive poly(N-isopropylacrylamide) as a modulator for alteration of hydrophilic/hydrophobic surface properties to control activation/inactivation of platelets.” J. Controlled Release 36 (1995) 125-133.
    24. Peppas, N. A.& Klier, J. “Controlled release by using poly(metha- crylic acid-g-ethylene glycol) hydrogels.” J. Controlled Release 16 (1991) 203-214.
    25. Tateishi, T., Chen, G., Ushida, T. “Biodegradable porous scaffolds for tissue engineering.” J. Artif. Organs. 5 (2002) 77–83.
    26. Wade, L. G., JR. Organic chemistry. (1999) 818-822.
    27. Watanabe, T., Utsunomiya, M., Kurihara, S., Nonaka, T. “Synthesis of thermosensitive hydrogels from acryloyloxyethyl trialkylphosphonium chloride–N-isopropylacrylamide–N, N-Methylenebisacrylamide terpo- lymers and their temperature dependence of Water absorption.” J. Polym. Sci. A. 39 (2001) 1505–1514.
    28. Wichterle, O., Lim, D. “Hydrophilic gels in biologic use.” Nature 185 (1960) 117.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE