簡易檢索 / 詳目顯示

研究生: 何恕德
Shu-Te Ho
論文名稱: 以導電性原子力顯微術研究矽在奈米壓痕下之相變化行為
Conducting Atomic Force Microscopy Study of Phase Transformation of Silicon under Nanoindentation
指導教授: 林鶴南
Heh-Nan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 85
中文關鍵詞: 奈米壓痕導電性原子力顯微術高壓相變化
外文關鍵詞: nanoindentation, conducting atomic force microscopy, silicon, pressure-induced phase trandformation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當矽受到高壓(11~12 GPa)時,會由一大氣壓下穩定的鑽石結構,相變化為具有白錫(β-tin)結構且為金屬性的矽第二相(Si-II)。當壓力釋放後,隨著壓力卸載的速率不同,轉變成介穩定態的半金屬矽第三相(Si-III)、半導體性的矽第十二相(Si-XII)與非晶質相(amorphous),而對於矽高壓相變化的研究數據,大部分是巨觀下(X-ray繞射分析、拉曼光譜等等)量測的結果,對於在奈米區域下相變化的實驗結果仍不多。
    本實驗利用導電性原子力顯微術(CAFM)研究矽在奈米壓痕後所產生高導電性第三相的特性。在荷重3~90 mN之間,荷重-位移曲線具有因為第三、十二相出現時體積膨脹所造成不連續現象,與文獻結果符合。從表面形貌與電流影像中,顯示壓痕內有任意分佈的高電流區域,大小約數十至數百 nm。從定點量測高電流區域的電流-電壓曲線,以Fowler-Nordheim穿隧電流理論分析,得到第三相與氧化矽之接面能障為0.39 eV,推算其功函數為1.51 eV。


    At atmospheric pressure, semiconductor silicon (Si-I) has the stable diamond structure. Under hydrostatic pressures of 11~12 GPa, the Si-I phase undergoes a phase transformation to the phase, which has a β-tin structure. During the release of pressure, metastable phases semi-metallic Si-III, semiconductive Si-XII and amorphous silicon are produced from Si-II at different unloading rates. Although most experimental results reveal various properties of phases, less informations about the nanoscale properties have been explored.
    In the experiment, conducting atomic force microscopy is used to study the high conductivity Si-III phase under nanoindentation. With loading forces of 3~90 mN, discontinuities in the load-displacement curves are observed, which are caused by the volume expansion effect when the Si-III and Si-XII phases are produced. In the simultaneously obtained topography and current images, high current regions are found to be randomly distributed in the indented region. These regions have sizes ranging from several tens to several hundreds of nm with a smallest diameter of around 25 nm. Current-voltage curves in the high current site have also been measured and fitted with Fowler-Nordheim equation. Barrier height between Si-III and SiO2 and work function of Si-III were determined to be 0.39 and 1.51 eV, respectively.

    摘要…………………………………………………………………………Ⅰ Abstract……………………………………………………………………Ⅱ 誌謝…………………………………………………………………………Ⅳ 作者簡介……………………………………………………………………Ⅴ 著作表………………………………………………………………………Ⅵ 目錄…………………………………………………………………………Ⅷ 圖目錄……………………………………………………………………ⅩⅠ 表目錄……………………………………………………………………ⅩⅤ 第一章、 簡介………………………………………………………………1 1.1 矽材料簡介……………………………………………………………1 1.2 四A族元素與三五族半導體之高壓相變化……………………………2 1.3 高壓來源(Diamond Anvil Cell and Indentation)………………5 第二章、 文獻回顧…………………………………………………………7 2.1 矽於高壓下相變化研究之歷史發展…………………………………7 2.2 矽高壓相變化機制……………………………………………………9 2.3 矽高壓各相特性………………………………………………………13 2.4 電性量測………………………………………………………………14 2.5 實驗目的………………………………………………………………16 第三章、 奈米壓痕儀(Nanoindentation)………………………………17 3.1 研究微觀機械性質儀器之發展………………………………………17 3.2 奈米壓痕儀……………………………………………………………18 3.2.1 儀器架構……………………………………………………………18 3.2.2 鑽石探針形狀……………………………v………………………22 3.3 理論分析………………………………………………………………23 3.4 誤差來源與校正………………………………………………………26 3.4.1 熱漂移修正(Drift Correction)……………………………26 3.4.2 靜電力常數(EFC)與彈簧力補償(SFC)………………………28 第四章、 導電性原子力顯微術(CAFM)……………………………………30 4.1 原子力顯微術(AFM)簡介………………………………………………30 4.2 導電性原子力顯微術(CAFM)簡介……………………………………33 4.2.1 儀器架構……………………………………………………………33 4.2.2 探針導電性量測……………………………………………………34 4.3 穿隧理論………………………………………………………………35 4.3.1 Fowler-Nordheim穿隧理論…………………………………………35 4.3.2 Simmons 穿隧理論..………………………………………………36 第五章、 奈米壓痕量測結果與討論………………………………………38 5.1 樣品製備………………………………………………………………38 5.2 荷重-位移曲線與硬度、楊氏係數之量測…………………………40 5.3 不連續現象(Discontinuity)………………………………………41 5.4 肘彎現象(Elbow Effect)……………………………………………45 5.5 電子背散射繞射分析(EBSD)之量測…………………………………46 5.5.1 儀器與原理介紹……………………………………………………47 5.5.2 相分佈影像…………………………………………………………49 第六章、 導電性原子力顯微術實驗結果與討論…………………………51 6.1 不同荷重下壓痕之表面形貌與電流影像………………………51 6.1.1 荷重90 mN之壓痕表面影像………………………………51 6.1.2 荷重50 mN之壓痕表面影像與電流影像…………………52 6.1.3 荷重3 mN之壓痕表面影像與電流影像……………………56 6.2 電流-電壓曲線(I-V Curves)……………………………………58 6.2.1 F-N Eq.….………………………………………………61 6.2.2 Simmons Eq.………………………………………………………63 第七章、 結論 ……………………………………………………………64 參考文獻 …………………………………………………………………65

    1. J. Z. Hu, L. D. Merkle, C. S. Menoni, and I. L. Spain, Phys. Rev. B, 34, 4679, 1986
    2. Y-X. Zhao, F. Buehler, J. R. Sites, and I. L. Spain, Solid State Commun. 59, 678 (1986)
    3. J. D. Joannopoulos and M. L. Cohen in “Solid State Physics” eds. F. Seitz, D. Turnbull and H. Ehrenreich(Academic Press, NY, 1976) Vol. 31, p. 71.
    4. A. Kailer, Y. G. Gogotsi, and K. G. Nickel, J. Appl. Phys. 81, 3057 (1997)
    5. S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B, 41, 12021(1990)
    6. M. A. Sheindlin, Teplofiz. Vys.Temp. 19, 630(1981)[High Temp. 19, 467(1981)]
    7. M. A. Scheindlin, Mat. Res. Soc Symp. Proc. 22, 33(1984)
    8. Phase diagrams of the elements, by David A. Young, Berkeley, University of California Press (1991)
    9. J. Crain, G. J. Ackland, R. O. Piltz, and P. D. Hatton, Phys. Rev. Lett, 70, 814(1993)
    10. Y. G. Gogoysi, V. Domnich, S. N. Dub, A. Kailer and K. G. Nickle, J. Mater. Res. 15, 871(2000)
    11. J. D. Joannopoulos, M. L. Cohen, Phys. Rev. B, 10, 1545(1974)
    12. J. C. Jamieson, A.W.Larson, and N. D. Nachtrieb, Rev, Sci. Instru, 30, 1016(1959)
    13. High pressure experimental methods, by M.I. Eremets, Oxford, Oxford University, 1996, New York
    14. S. Minomura and H. G. Drickamer, J. Phys. Chem. Solids, 23, 451(1961)
    15. R. H. Wentorf, J. S. Kasper, Science, 139, 338-339, 1963.
    16. J. S. Kasper, and S. M. Richards, Acta Cryst. 17, 752, 1964.
    17. John C. Jamieson, Science, 139, 762-764(1963)
    18. R. J. Kobliska, S. A. Solin et al., Phys. Rev. Lett. 29, 725(1972)
    19. I. V. Gridneva, Yu. V. Milman, V. I. Trefilov, Phys. Stat. Sol (a) 14, 177(1972)
    20. M. C. Gupta, and A. L. Ruoff, J. Appl. Phys., 51, 1072(1980)
    21. J. A. Van Vechten, Phys. Rev. B, 7, 1479(1973)
    22. J. D. Joannopoulos and M. L. Cohen, Phys. Rev. B, 7, 2644(1973); Phys. Rev. B, 8, 2733(1973)
    23. J. F. Cannon, J. Phys. Chem. Ref. Data 3, 781(1974)
    24. H. Olijnyk, S. K. Sikka, and W. B. Holzapfel, Phys. Lett 103A(1984)
    25. Y. X. Zhao, F. Buehler, J. R. Sitew, and I. L. Spain, Solid State Commun. 59, 679(1986)
    26. J. Crain, G. J. Ackland, J. R. Maclean, R. O. Pitlz, P. D. Hatton, and G. S. Pawley, Phys. Rev. B, 50, 13043
    27. S. J. Duclos, Y. K. Vohra, and Arthur L. Ruoff, Phys. Rev. B, 41, 12021(1990)
    28. A. Kailer, Y. G. Gogotsi, and K. G. Nickel, J. Appl. Phys. 80, 3057(1996)
    29. V. Dominch, and Y. Gogotsi, Appl. Phys. Lett, 76, 2214(2000)
    30. D. Ge, V. Domnic, and Y. Gogotsi, J. Appl. Phys, 93, 2418(2003)
    31. M.I. McMahon and R. J. Nelmes, Phys. Rev. B 50, 739(1994).
    32. J. Z. Hu, L. D. Merkle, C. S. Menoni and I. L. Spain, Phys. Rev. B 34, 4679 (1986)
    33. J. C. Jamieson. Science, 139, 3556, 762-764(1963)
    34. M.I. McMahon and R. J. Nelmes, Phys. Rev. B 47, 8337(1993).
    35. R. H. Wentorf, and J. S. Kasper, Science, 139, 338-339(1963)
    36. R. O. Piltz, PRB, 52, 4072(1995)
    37. R. J. Kobliska, and S. A. Solin, Phys. Rev. B, 8, 3799(1973)
    38. H. Olijnyk, S. K. Sikka, and W. B. Holzapfel, Phys Lett, 103A, 137(1983)
    39. J. D. Steven, K. V. Yogesh, and L. R. Arthur, Phys. Rev. B, 41, 12021(1990)
    40. Y. X. Zhao, F. Buehler, J. R. Sites, and I. L. Spain, Solid State Commun. 59, 679(1986)
    41. A. George, in Properties of Crystalline Silicon, 20th ed., edited by R. Hull(INSPEC, Londen, 1999), pp.104-107
    42. J. M. Besson, E. H. Mokhtari, J. Gonzalez, and G. Weill, Phys. Rev. Lett., 59, 473(1987)
    43. D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. F. Cook, and B. J. Hockey, Phys. Rev. Lett, 60, 2156(1988)
    44. J. B. Pethica, R. Hutchings, and W. C. Oliver, Philos. Mag. A 48, 593(1983)
    45. G. M. Pharr, W. C. Oliver, and D. R. Clarke, Scripta Metallurgica, 23, 1949-1952(1989)
    46. G. M. Pharr, W. C. Oliver, and D. R. Clarke, J. Mater. Res. 7, 961(1991)
    47. M. Hamfland, K. Syassen, M. Alouani, and N. E. Christensen, Semicond. Sci. Technol., 4, 250(1989)
    48. L. L. Boyer, E. Kaxiras, J. L. Feldman, J. Q. Broughton, and M. J. Mehl, Phys. Rev. Lett, 67, 715(1991)
    49. J. Crain, S. J. Clark, G. J. Ackland, M. C. Payne, V. Milman, P. D. Hatton, Phys. Rev. B, 49, 5329(1994)
    50. S. P. Lewis, and M. L. Cohen, Phys. Rev. B, 48, 16144(1993)
    51. J. N. Israelachvili and D. Tabor, Proc. R. Soc. London, Ser. A 331, 19(1972)
    52. G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    53. A. J. Stepphen, and J. E. Colton, Rev. Sci. Instrum, 62, 710(1990)
    54. B. Bhushan, and A. V. Kulkarni, Philosophical Magazine A, 74, 1117-1128, (1996)
    55. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)
    56. H. Hertz, J.Reine. Angew. Math. 92, 156(1882)
    57. 施孟君, ”合金與薄膜之奈米壓痕量測”, 清華大學材料科學工程學系碩士論文,民國九十一年六月。
    58. J. D. Holbery, V. L. Eden, M. Sarikaya, and M. Fisher, Rev. Sci. Instru, 71, 3769, 2000.
    59. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett, 49, 56(1982)
    60. Y. Martin, C. C. Williams and H. K. Wickramasingghe, J. Appl. Phys., 61, 4723(1987)
    61. Q. Zhong, D. Innis, K. Kjoller and V. B. Elings, Surf. Sci. Lett., 290, L688(1993)
    62. H.-N. Lin, S.-H Chen, S.-T. Ho, P.-R. Chen, and I-N. Lin, J. Vac. Sci.Technol. 21B, 916(2003)
    63. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A119,173(1928)
    64. J. G. Simmons, J. Appl. Phys, 34, 1793(1963)
    65. A. Sommerfeld, and H. Bethe, Handbüch∙der Physik von Geiger and Scheel(Julius Springer-Verlag, Berlin, 1933, Vol. 24, p.450.
    66. R. Holm, J. Appl. Phys. 22, 569(1951)
    67. B. Chen, A. Sher, and W. T. Yost, in The Mechnical Properties of Semiconductor edited by K. T. Faber and K. Malloy(Academic Press, London, 1992), Vol. 37, p.68
    68. A. F. Ericson et al., Mater. Sci. Eng A105/106, 131(1988)
    69. J. Z. Hu, L. D. Merkle, C. S. Menoni, and I. L. Spain, Phys. Rev. B, 34, 4679(1986)
    70. G. M. Pharr, W. C. Oliver, and D. R. Clarke, J. Electronic Mater. 19, 881(1990)
    71. V. Domnich, Y. Gogotsi, and Sergey, Appl. Phys. Lett, 76, 2214(2000)
    72. A. B. Mann, D. V. Heerden, J. B. Pethica, and T. P. Weihs, J. Mater. Res. 15, 1754(2000)
    73. E. R. Weppelmann, J. S. Field, and M. V. Swain, J. Mater. Sci. 30, 2455-2462(1995)
    74. J. E. Bradby, J. S. Williams, J. W-L, M. V. Swain, and P. Munroe, Appl Phys Lett, 77, 3749(2000)
    75. J. S. Williams, Y. Chen, J. W-L, A. Kerr and M. V. Swain, J. Mater. Res, 14, 2338(1999)
    76. I. Zarudi, L. C. Zhang, and M. V. Swain, Appl, Phys. Lett. 82, 1027(2003)
    77. V. Domnich, Y. Gogotsi, and S. Dub, Appl. Phys.Lett. 76, 2214(2000)
    78. A. J. Wilkinson, and P. B. Hirsch, Micron, 28, 279(1997).
    79. H. C. Day, and D. R. Allee, Appl. Phys. Lett, 62, 2691(1993).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE