研究生: |
何恕德 Shu-Te Ho |
---|---|
論文名稱: |
以導電性原子力顯微術研究矽在奈米壓痕下之相變化行為 Conducting Atomic Force Microscopy Study of Phase Transformation of Silicon under Nanoindentation |
指導教授: |
林鶴南
Heh-Nan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 奈米壓痕 、導電性原子力顯微術 、矽 、高壓相變化 |
外文關鍵詞: | nanoindentation, conducting atomic force microscopy, silicon, pressure-induced phase trandformation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當矽受到高壓(11~12 GPa)時,會由一大氣壓下穩定的鑽石結構,相變化為具有白錫(β-tin)結構且為金屬性的矽第二相(Si-II)。當壓力釋放後,隨著壓力卸載的速率不同,轉變成介穩定態的半金屬矽第三相(Si-III)、半導體性的矽第十二相(Si-XII)與非晶質相(amorphous),而對於矽高壓相變化的研究數據,大部分是巨觀下(X-ray繞射分析、拉曼光譜等等)量測的結果,對於在奈米區域下相變化的實驗結果仍不多。
本實驗利用導電性原子力顯微術(CAFM)研究矽在奈米壓痕後所產生高導電性第三相的特性。在荷重3~90 mN之間,荷重-位移曲線具有因為第三、十二相出現時體積膨脹所造成不連續現象,與文獻結果符合。從表面形貌與電流影像中,顯示壓痕內有任意分佈的高電流區域,大小約數十至數百 nm。從定點量測高電流區域的電流-電壓曲線,以Fowler-Nordheim穿隧電流理論分析,得到第三相與氧化矽之接面能障為0.39 eV,推算其功函數為1.51 eV。
At atmospheric pressure, semiconductor silicon (Si-I) has the stable diamond structure. Under hydrostatic pressures of 11~12 GPa, the Si-I phase undergoes a phase transformation to the phase, which has a β-tin structure. During the release of pressure, metastable phases semi-metallic Si-III, semiconductive Si-XII and amorphous silicon are produced from Si-II at different unloading rates. Although most experimental results reveal various properties of phases, less informations about the nanoscale properties have been explored.
In the experiment, conducting atomic force microscopy is used to study the high conductivity Si-III phase under nanoindentation. With loading forces of 3~90 mN, discontinuities in the load-displacement curves are observed, which are caused by the volume expansion effect when the Si-III and Si-XII phases are produced. In the simultaneously obtained topography and current images, high current regions are found to be randomly distributed in the indented region. These regions have sizes ranging from several tens to several hundreds of nm with a smallest diameter of around 25 nm. Current-voltage curves in the high current site have also been measured and fitted with Fowler-Nordheim equation. Barrier height between Si-III and SiO2 and work function of Si-III were determined to be 0.39 and 1.51 eV, respectively.
1. J. Z. Hu, L. D. Merkle, C. S. Menoni, and I. L. Spain, Phys. Rev. B, 34, 4679, 1986
2. Y-X. Zhao, F. Buehler, J. R. Sites, and I. L. Spain, Solid State Commun. 59, 678 (1986)
3. J. D. Joannopoulos and M. L. Cohen in “Solid State Physics” eds. F. Seitz, D. Turnbull and H. Ehrenreich(Academic Press, NY, 1976) Vol. 31, p. 71.
4. A. Kailer, Y. G. Gogotsi, and K. G. Nickel, J. Appl. Phys. 81, 3057 (1997)
5. S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B, 41, 12021(1990)
6. M. A. Sheindlin, Teplofiz. Vys.Temp. 19, 630(1981)[High Temp. 19, 467(1981)]
7. M. A. Scheindlin, Mat. Res. Soc Symp. Proc. 22, 33(1984)
8. Phase diagrams of the elements, by David A. Young, Berkeley, University of California Press (1991)
9. J. Crain, G. J. Ackland, R. O. Piltz, and P. D. Hatton, Phys. Rev. Lett, 70, 814(1993)
10. Y. G. Gogoysi, V. Domnich, S. N. Dub, A. Kailer and K. G. Nickle, J. Mater. Res. 15, 871(2000)
11. J. D. Joannopoulos, M. L. Cohen, Phys. Rev. B, 10, 1545(1974)
12. J. C. Jamieson, A.W.Larson, and N. D. Nachtrieb, Rev, Sci. Instru, 30, 1016(1959)
13. High pressure experimental methods, by M.I. Eremets, Oxford, Oxford University, 1996, New York
14. S. Minomura and H. G. Drickamer, J. Phys. Chem. Solids, 23, 451(1961)
15. R. H. Wentorf, J. S. Kasper, Science, 139, 338-339, 1963.
16. J. S. Kasper, and S. M. Richards, Acta Cryst. 17, 752, 1964.
17. John C. Jamieson, Science, 139, 762-764(1963)
18. R. J. Kobliska, S. A. Solin et al., Phys. Rev. Lett. 29, 725(1972)
19. I. V. Gridneva, Yu. V. Milman, V. I. Trefilov, Phys. Stat. Sol (a) 14, 177(1972)
20. M. C. Gupta, and A. L. Ruoff, J. Appl. Phys., 51, 1072(1980)
21. J. A. Van Vechten, Phys. Rev. B, 7, 1479(1973)
22. J. D. Joannopoulos and M. L. Cohen, Phys. Rev. B, 7, 2644(1973); Phys. Rev. B, 8, 2733(1973)
23. J. F. Cannon, J. Phys. Chem. Ref. Data 3, 781(1974)
24. H. Olijnyk, S. K. Sikka, and W. B. Holzapfel, Phys. Lett 103A(1984)
25. Y. X. Zhao, F. Buehler, J. R. Sitew, and I. L. Spain, Solid State Commun. 59, 679(1986)
26. J. Crain, G. J. Ackland, J. R. Maclean, R. O. Pitlz, P. D. Hatton, and G. S. Pawley, Phys. Rev. B, 50, 13043
27. S. J. Duclos, Y. K. Vohra, and Arthur L. Ruoff, Phys. Rev. B, 41, 12021(1990)
28. A. Kailer, Y. G. Gogotsi, and K. G. Nickel, J. Appl. Phys. 80, 3057(1996)
29. V. Dominch, and Y. Gogotsi, Appl. Phys. Lett, 76, 2214(2000)
30. D. Ge, V. Domnic, and Y. Gogotsi, J. Appl. Phys, 93, 2418(2003)
31. M.I. McMahon and R. J. Nelmes, Phys. Rev. B 50, 739(1994).
32. J. Z. Hu, L. D. Merkle, C. S. Menoni and I. L. Spain, Phys. Rev. B 34, 4679 (1986)
33. J. C. Jamieson. Science, 139, 3556, 762-764(1963)
34. M.I. McMahon and R. J. Nelmes, Phys. Rev. B 47, 8337(1993).
35. R. H. Wentorf, and J. S. Kasper, Science, 139, 338-339(1963)
36. R. O. Piltz, PRB, 52, 4072(1995)
37. R. J. Kobliska, and S. A. Solin, Phys. Rev. B, 8, 3799(1973)
38. H. Olijnyk, S. K. Sikka, and W. B. Holzapfel, Phys Lett, 103A, 137(1983)
39. J. D. Steven, K. V. Yogesh, and L. R. Arthur, Phys. Rev. B, 41, 12021(1990)
40. Y. X. Zhao, F. Buehler, J. R. Sites, and I. L. Spain, Solid State Commun. 59, 679(1986)
41. A. George, in Properties of Crystalline Silicon, 20th ed., edited by R. Hull(INSPEC, Londen, 1999), pp.104-107
42. J. M. Besson, E. H. Mokhtari, J. Gonzalez, and G. Weill, Phys. Rev. Lett., 59, 473(1987)
43. D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. F. Cook, and B. J. Hockey, Phys. Rev. Lett, 60, 2156(1988)
44. J. B. Pethica, R. Hutchings, and W. C. Oliver, Philos. Mag. A 48, 593(1983)
45. G. M. Pharr, W. C. Oliver, and D. R. Clarke, Scripta Metallurgica, 23, 1949-1952(1989)
46. G. M. Pharr, W. C. Oliver, and D. R. Clarke, J. Mater. Res. 7, 961(1991)
47. M. Hamfland, K. Syassen, M. Alouani, and N. E. Christensen, Semicond. Sci. Technol., 4, 250(1989)
48. L. L. Boyer, E. Kaxiras, J. L. Feldman, J. Q. Broughton, and M. J. Mehl, Phys. Rev. Lett, 67, 715(1991)
49. J. Crain, S. J. Clark, G. J. Ackland, M. C. Payne, V. Milman, P. D. Hatton, Phys. Rev. B, 49, 5329(1994)
50. S. P. Lewis, and M. L. Cohen, Phys. Rev. B, 48, 16144(1993)
51. J. N. Israelachvili and D. Tabor, Proc. R. Soc. London, Ser. A 331, 19(1972)
52. G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
53. A. J. Stepphen, and J. E. Colton, Rev. Sci. Instrum, 62, 710(1990)
54. B. Bhushan, and A. V. Kulkarni, Philosophical Magazine A, 74, 1117-1128, (1996)
55. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)
56. H. Hertz, J.Reine. Angew. Math. 92, 156(1882)
57. 施孟君, ”合金與薄膜之奈米壓痕量測”, 清華大學材料科學工程學系碩士論文,民國九十一年六月。
58. J. D. Holbery, V. L. Eden, M. Sarikaya, and M. Fisher, Rev. Sci. Instru, 71, 3769, 2000.
59. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett, 49, 56(1982)
60. Y. Martin, C. C. Williams and H. K. Wickramasingghe, J. Appl. Phys., 61, 4723(1987)
61. Q. Zhong, D. Innis, K. Kjoller and V. B. Elings, Surf. Sci. Lett., 290, L688(1993)
62. H.-N. Lin, S.-H Chen, S.-T. Ho, P.-R. Chen, and I-N. Lin, J. Vac. Sci.Technol. 21B, 916(2003)
63. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A119,173(1928)
64. J. G. Simmons, J. Appl. Phys, 34, 1793(1963)
65. A. Sommerfeld, and H. Bethe, Handbüch∙der Physik von Geiger and Scheel(Julius Springer-Verlag, Berlin, 1933, Vol. 24, p.450.
66. R. Holm, J. Appl. Phys. 22, 569(1951)
67. B. Chen, A. Sher, and W. T. Yost, in The Mechnical Properties of Semiconductor edited by K. T. Faber and K. Malloy(Academic Press, London, 1992), Vol. 37, p.68
68. A. F. Ericson et al., Mater. Sci. Eng A105/106, 131(1988)
69. J. Z. Hu, L. D. Merkle, C. S. Menoni, and I. L. Spain, Phys. Rev. B, 34, 4679(1986)
70. G. M. Pharr, W. C. Oliver, and D. R. Clarke, J. Electronic Mater. 19, 881(1990)
71. V. Domnich, Y. Gogotsi, and Sergey, Appl. Phys. Lett, 76, 2214(2000)
72. A. B. Mann, D. V. Heerden, J. B. Pethica, and T. P. Weihs, J. Mater. Res. 15, 1754(2000)
73. E. R. Weppelmann, J. S. Field, and M. V. Swain, J. Mater. Sci. 30, 2455-2462(1995)
74. J. E. Bradby, J. S. Williams, J. W-L, M. V. Swain, and P. Munroe, Appl Phys Lett, 77, 3749(2000)
75. J. S. Williams, Y. Chen, J. W-L, A. Kerr and M. V. Swain, J. Mater. Res, 14, 2338(1999)
76. I. Zarudi, L. C. Zhang, and M. V. Swain, Appl, Phys. Lett. 82, 1027(2003)
77. V. Domnich, Y. Gogotsi, and S. Dub, Appl. Phys.Lett. 76, 2214(2000)
78. A. J. Wilkinson, and P. B. Hirsch, Micron, 28, 279(1997).
79. H. C. Day, and D. R. Allee, Appl. Phys. Lett, 62, 2691(1993).