研究生: |
林志遠 Lin, Chih-Yuan |
---|---|
論文名稱: |
智慧型網狀光纖布拉格光柵感測網路 Smart Fiber Bragg Grating Sensor System Based on Mesh Network Topologies |
指導教授: |
馮開明
Feng, Kai-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 光纖感測 、光纖雷射 、感測網路 、光纖光柵 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著智慧型公共工程或是高速通訊網路的出現,布拉格光柵網路的佈放方式越來越複雜,因此論文提出了網狀光纖光柵網路來提高感測網路的存活度,該網路系統包括網狀(Mesh)拓樸的布拉格光纖光柵網路和中央控制台(Central Office)。網狀光纖光柵網路利用四組布拉格波長相互正交的光纖光柵沿著水平和垂直方向佈放,提供了網路額外的路線傳送訊號,因此增強網路的自我治癒。除此之外,網狀網路搭配遠端網路節點(Remote Node)的路線切換,提升網路容錯技術。
中央控制台負責提供網狀布拉格光纖光柵網路高功率光源以及監測網狀網路返回的布拉格訊號,該網路監控系統包含環型光纖雷射(Fiber Ring Laser)和平行監測訊號的陣列波導光柵(Arrayed Waveguide Gratings)。相較於功率和頻寬取捨(Trade-Off)的傳統光源,環型共振腔的雷射有效地提高布拉格反射訊號的輸出功率,補償2x2交換器造成的功率下降。至於接收端方面,利用測量陣列波導光柵相鄰的兩個輸出通道功率,得知光纖光柵的拉力,換句話說,將因拉力造成的位移效應轉換成接收到的相對功率比值。至於網狀光纖光柵網路實驗,返回頻譜的十二個布拉格訊號,訊雜比(Signal-to-Noise Ratio, SNR)都超過60 dB。既然網狀布拉格光纖光柵網路可以同時提供不同的路線傳送訊號,因此如何找到效率最高的路線是我們亟需關切及解決的問題。最後,將討論網狀感測網路如何透過最短路線的計算,協助我們找出最適合的感測路線。
[1]S. Yin, P. B. Ruffin, and Francis T. S. Yu, “Fiber Optic Sensors,” CRC.
[2]J. W. Goodman, “Fiber Optic Smart Structures,” John Wiley & Sons.
[3]A. Othonos and K. Kalli, “Fiber Bragg Gratings: Fundamentals and Applications in Tele communications and Sensing,” Artech House.
[4]K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightw., Technol. vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
[5]S. V. Kartalopoulos, “Introduction To DWDM Technology,” John Wiley & Sons.
[6]J. Hecht, “Understanding Optical Communication,” Prentice Hall.
[7]D. A. Jackson and A. B. Lobo Ribeiro, “Simple Multiplexing Scheme for A Fiber-Optic Grating Sensor Netowork,” Opt. Lett., vol. 18, no. 14, pp.1192-1194.
[8]A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed Fiber Bragg Grating Strain-Sensor System with A Fiber Fabry-Perot Wavelength Filter,” Opt. Lett., vol. 18, no. 16, pp.1370-1372, Aug. 1993.
[9]T.A. Berkoff, M.A. Davis, D. G. Bellemore, and A. D. Kersey, “Hybrid Time and Wavelength Division Multiplexed Fiber Bragg Grating Sensor,” in Proc. SPIE, vol. 2444, pp. 288-294, 1995.
[10]A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442-1463, Aug. 1997.
[11]E. J. Friebele, M. A. Putnam, H. J. Patrick, A. D. Kersey, and A. S. Greenblatt, “Ultrahigh-Sensitivity Fiber-Optic Strain and Temperature Sensor,” Opt. Lett., vol. 23, no. 3, pp.222-224, Feb. 1998.
[12]Q. Sun, D. Liu, J. Wang, H. Liu, L. Xia, and P. Shum, “Multi-Point Temperature Warning Sensor Using A Multi-channel Matched Fiber Bragg Grating,” OFC’08.
[13]R. Ramaswami and K. N. Sivarajan, “Optical Networks: A Practical Perspective,” Morgan Kaufmann.
[14]P. C. Peng, H. Y. Tseng, and S. Chi, “A Novel Fiber-Laser-Based Sensor Network with Self-Healing Function,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 275-277.
[15]P. C. Peng, W. P. Lin, and S. Chi, “A Self-Healing Architecture for Fiber Bragg Grating Sensor Network,” Sensors, Proceedings of IEEE, vol.1, pp.60-63, 2004.
[16]M. K. Rahman, S. Selvakennedy, P. Poopalan, and Harith Ahmad, “Operating Wavelength of Erbium-Doped Fiber-Ring Laser,” Microwave & Opt. Technol. Lett., vol. 31, no. 2, pp.105-107, Oct. 2001.
[17]K. J. Vahala, N. Park, J. Dawson, and S. Sanders, “Tunable Single-Frequency Erbium Fiber Ring Lasers,” IEEE LEOS’93 Conf. Proc., pp.708-709.
[18]H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely Tunable Single-Frequency Erbium-Doped Fiber Lasers,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 185-187, Feb. 2003.
[19]K. Okamoto, “Fundamentals, Technology and Applications of AWGs,” in Proc. 24th ECOC, vol. 2, pp. 7-47, 1998.
[20]Y. Sano and T. Yoshino, “Fast Optical Wavelength Interrogator Employing Arrayed Waveguide Grating for Distributed Fiber Bragg Grating Sensors,” J. Lightw., Technol. vol. 21, no. 1, pp. 132-139, Jan. 2003.
[21]G. Z. Xiao, P. Zhao, F. Sun, Z. Lu, and Z. Zhang, “Arrayed-Waveguide-Grating Based Interrogator for Wavelength-Modulated Multi-Fiber-Optic Sensor Applications,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp. 1710-1712, 2005.
[22]P. Tsai, F. Sun, G. Xiao. Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber Bragg Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme with High Precision and Fast Detection Rate,” Photon. Technol. Lett., vol. 20, no. 4, pp. 300-302, Feb. 2008.
[23]M. Teshima, M. Koga, and K. Sato, “Multiwavelength Simultaneous Monitoring Circuit Employing Wavelength Crossover Properties of Arrayed-Waveguide Grating,” Electron. Lett., vol. 31, no. 18, pp.1595-1597, Aug. 1995.
[24]Y. Yu, L. Lui, H. Tam, and W. Chung, “Fiber-Laser-Based Wavelength Division Multiplexed Fiber Bragg Grating Sensor System,” IEEE Photon. Technol. Lett., vol. 13, no. 7, pp. 702-704, July 2001.
[25]A. D. Kersey and W. W. Morey, “Multi-Element Bragg Grating Based Fiber Laser Strain Sensor,” Electron. Lett., vol. 29, no. 11, pp.964-966, March 1993.
[26]G. A. Ball, W. W. Morey, and P. K. Cheo, “Single and Multipoint Fiber Laser Sensors,” IEEE Photon. Technol. Lett., vol. 5, no. 2, pp. 267-270, Feb. 1993.
[27]P. C. Peng and K. Y. Huang, “Fiber Bragg Grating Sensor System with Two-Level Ring Architecture,” IEEE Sensor Journal, vol. 9, no. 4, pp. 309-313, April 2009.
[28]L. L. Peterson and B. S. Davie, “Computer Networks,” Morgan Kaufmann.