研究生: |
江文任 Chiang, Wen-Jen |
---|---|
論文名稱: |
Silicon Nanocrystal Photosensor Integrated on Low-Temperature Poly-Silicon Display Panel 整合於低溫複晶矽顯示器面板上之矽奈米晶粒光感測器 |
指導教授: |
金雅琴
King, Ya-Chin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 159 |
中文關鍵詞: | 矽奈米晶粒 、嵌入式光感測器 、低溫複晶矽顯示器 、薄膜電晶體 |
外文關鍵詞: | silicon nanocrystal, embedded optical sensor, low-temperature poly-silicon, thin-film transistor |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Recently, the topic of in-cell photosensors integrated into TFT-LCDs has received considerable attention. By integrating an optical sensor or a sensor array on a display panel, additional functions such as backlight control for power saving, or optical touch screen, can be achieved on a TFT-LCD. With the feature of high carrier mobility, the low-temperature poly-silicon (LTPS) technology enables photodetectors to be incorporated into high performance poly-silicon thin-film transistor (TFT) circuits. That makes it self-contained to realize photo-sensing applications on an LTPS TFT-LCD. However, the conventional lateral p-i-n photodiodes on an LTPS display panel suffer from strong backlight noise and limitations in geometrical design. Besides, the grain boundaries in poly-silicon thin films markedly influence the reliability of the p-i-n photodiodes. In order to overcome the drawbacks, a novel photo-sensing device, using nanocrystalline silicon buried in an SiO2 film sandwiched between bottom metal and top indium-thin-oxide (ITO) electrodes is proposed to be realized on LTPS display panels.
In this dissertation, the fabrication of the Si-nanocrystal photosensor by adopting excimer-laser-annealing (ELA) in LTPS technology is described. The mechanisms of quantum confinement, dielectric confinement and photo-carrier generation and transportation within the Si nanocrystals are comprehensively investigated as well as the non-linear optical properties due to the interface effect between the Si quantum dots and the dielectric layer. An embedded ambient light sensor of the Si-nanocrystal photosensor is entirely characterized with performance comparisons to the p-i-n photodiode that reveals better optical performances and device reliability in the Si-nanocrystal ambient light sensor. An analytical SPICE model of the Si-nanocrystal photosensor is built for simulations of active sensor circuits designed for photo-sensing applications. A small-sized active sensor array is successfully demonstrated with the ability of image detection for an optical touch panel development. In addition, a backlight modulated readout scheme with a digital pixel output is studied in this work, which can filter out the ambient light noise and ensure the touch functionality under dark operational environment.
近年來,將光學感測器整合於薄膜電晶體液晶顯示器(TFT-LCD)上是相當受到關注的研究主題,藉由整合單一個光感應器或一個感測器陣列於顯示器面板上,一些有用的附加功能,例如利用控制背光源來節省電力的消耗,亦或是光學式的觸控面板等,可以實現在薄膜電晶體液晶顯示器上以提升其價值;低溫複晶矽(LTPS)技術擁有高載子遷移率,可於高效能的複晶矽(poly-Si)薄膜電晶體電路中整合光學感測器,以開發各種不同的應用;然而,在LTPS顯示器面板上,傳統側向式的p-i-n感光二極體會因為強烈背光源的照射影響其特性,且其結構在幾何設計與效能最佳化上面受到先天的限制。除此之外,複晶矽薄膜中的晶粒邊界存在著許多缺陷導致p-i-n感光二極體的元件可靠度低;為了決解這些缺點,本論文提出一個新式的光測器架構,將矽奈米晶體(Si nanocrystal)嵌入於一富矽氧化薄膜中,此氧化薄膜夾在不透光的金屬下電極與透明的銦錫氧化物(ITO)上電極之間做為一光感測元件,整合此新式矽奈米晶光感測器,可在LTPS顯示器面板上開發嵌入式環境光感測器以及光學反射式觸控面板。
本論文中將詳述利用LTPS製程中的準分子雷射退火技術來製造矽奈米晶光感測器的方法,並討論此矽奈米晶光感測器的量子侷限效應以及光激載子的產生與傳輸等機制,更進一步地討論由於矽量子點與介電層的介面效應所造成的非線性光響應特性。本論文將詳細分析此嵌入式矽奈米晶環境光感測器的特性並將之與傳統p-i-n感光二極體之環境光感應器做比較,由實驗的結果可得知矽奈米晶光感測器有較好的光感測效能和元件可靠度。本論文在SPICE的環境中建立了一個矽奈米晶光感測器的模型,利用此光感測器模型可精確的預測被動式或主動式矽奈米晶光感測架構的光電反應;本論文亦成功實做一小型主動式感測器陣列並展示其影像偵測的能力,以利評估光學式觸控面板的開發,並提出一背光調變式的讀取方法,此讀取電成功地濾除了環境光的雜訊,並確保光感應式觸控螢幕不受環境光的影響,於各種操作環境下都能維持正常功能。
Chapter 1
[1.1] P. G. deGennes, The Physics of Liquid Crystals. Oxford, U.K.: Clarendon Press, 1974.
[1.2] Y. Yamamoto, T. Matsuo, and H. Komiya, “CG Silicon® Technology and System Integration for Mobile Applications”, in SID Sym. Dig. Tech. Papers, 2006, vol. 37, no. 1, pp. 1173-1176.
[1.3] H. Ohshima, and M. Führen, “High-performance LTPS technologies for advanced mobile display applications”, in SID Sym. Dig. Tech. Papers, 2007, vol. 38, no. 1, pp. 1482-1485.
[1.4] J. P. Krusius, D. P. Seraphim, R. G. Greene, D. S. Skinner, and B. Yost, “Approaches Toward Ultralarge FPD”, in IEEE Proceedings, 2002, vol. 90, no. 4, pp. 559-580.
[1.5] T. Tsukada, “TFT/LCD: Liquid-crystal displays addressed by thin film transistors,” in Japanese Technology Reviews. New York: Gordon and Breach, 1996, sec. A: Electronics.
[1.6] J. Kanicki, F. R. Libsch, J. Griffith, and R. Polastre, “Performance of thin hydrogenated amorphous silicon thin-film transistors”, J. Appl. Phys., vol. 69, pp. 2339-2345, 1991.
[1.7] T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, “Low-temperature fabrication of high mobility poly-Si TFTs for large-area LCDs”, IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1929-1933, 1989.
[1.8] T. Matsuo, and T. Muramatsu, “CG Silicon Technology and Development of System on Panel”, in SID Sym. Dig. Tech. Papers, 2004, vol. 35, no. 1, pp. 856-859.
[1.9] T. Nishibe and H. Nakamura, “Value-Added Circuit and Function Integration for SOG (System-on Glass) Based on LTPS Technology”, in SID Sym. Dig. Tech. Papers, 2006, vol. 37, no. 1, pp. 1091-1094.
[1.10] K. Komiya, M. Kanzaki, and T. Yamashita, “A 2048-element contact-type linear image sensor for facsimile”, in IEEE IEDM Tech. Dig., 1981, vol. 27, pp. 309-312.
[1.11] Y. Kanoh, S. Usui, A. Sawada, and M. Kikuchi, “A contact-type linear sensor with a GD a-Si:H photodetector array”, in IEEE IEDM Tech. Dig., 1981, vol. 27, pp. 313-316.
[1.12] T. Tsukada, T. Baji, Y. Shimomoto, A. Sasano, Y. Tanaka, H. Matsumaru, Y. Takasaki, N. Koike, and T. Akiyama, “Solid-state color imager using an a-Si:H photoconductive film”, in IEEE IEDM Tech. Dig., 1981, vol. 27, pp. 479-482.
[1.13] T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT’s analog readout circuits and dynamic shift registers”, IEEE Trans. Electron Devices, vol. 38, no. 5, pp. 1086-1093, 1991.
[1.14] M. J. Powell, J. R. Hughes, N. C. Bird, C. Glasse, and T. R. King, “Seamless tiling of amorphous silicon photodiode-TFT arrays for very large area X-ray image sensors”, IEEE Trans. Med. Imag., vol. 17, no. 6, pp. 1080-1083, 1998.
[1.15] J. S. Kim, K. S. Choo, J. H. Park, I. J. Chung, and I. S. Joo, “Novel structure of 21.6 inch a-Si:H TFT array for the direct X-ray detector”, J. Inf. Display, vol. 1, no. 1, pp. 29-31, 2000.
[1.16] G. Morrison, M. Singh, and D. Holmgren, “Machine vision passive touch technology for interactive displays”, in SID Sym. Dig. Tech. Papers, 2001, vol. 32, no. 1, pp. 74-77.
[1.17] D. G. Hopper, “Special Section on Electronic paper and reflective displays”, J. Soc. Inf. Display, vol. 16, no. 1, pp. 89-90, 2008.
[1.18] S. Suner, J. McMurdy, G. Jay, and G. Crawford, “Digital image, spectroscopy, and liquid crystals in a hand-held, non-invasive device to determine hemoglobin concentration”, J. Soc. Inf. Display, vol. 15, no. 6, pp. 499-407, 2007.
[1.19] K. Rosan, “Hydrogenated amorphous-silicon image sensors”, IEEE Trans. Electron Devices, vol. 36, no. 12, pp. 2923-2927, 1989.
[1.20] H. Haga, Y. Nonaka, Y. Kamon, Y. Kitagishi, M. Jumonji, K. Takatori, and H. Asada, “DRAM-frame-memory embedded SOG-LCD”, in SID Sym. Dig. Tech. Papers, 2007, vol. 38, no. 1, pp. 1486-1489.
[1.21] H. T. Chen, S. I. Hsieh, C. J. Lin, and Y. C. King, “Embedded TFT NAND-type nonvolatile memory in panel”, IEEE Electron. Lett., vol. 28, no. 6, pp. 499-501, 2007.
[1.22] S. I. Uehara, N. Ikeda, N. Takanashi, M. Iriguchi, M. Sugimoto, T. Matsuzake, and H. Asada, “A 470 x 235-ppi poly-Si TFT-LCD for high-resolution 2-D and 3-D autostereoscopic displays”, J. Soc. Inf. Display, vol. 13, no. 3, pp. 209-214, 2005.
[1.23] Y. Vygranenko, J. H. Chang, and A. Nathan, “Two-dimensional a-Si:H n-i-p photodiode array for low-level light detection”, IEEE J. Quantum Electron., vol. 41, no. 5, pp. 697-703, 2005.
[1.24] J. P. Colinge, “p-i-n photodiodes made in laser-recrystallized silicon-on-insulator”, IEEE Trans. Electron Devices, vol. 33, no. 2, pp. 203-205, 1986.
[1.25] J. Glueck, “A simplified a-Si:H TFT process for large-area AMLCDs”, J. Soc. Inf. Display, vol. 5, no. 3, pp. 189-195.
[1.26] C. Y. Lin, K. B. Hsu, Ryan Lee, C. H. Tseng, S. C. Chang, and Y. M. Tsai, “High performance fully self-aligned symmetric LDD TFT for system-on- panel display”, in SID Sym. Dig. Tech. Papers, 2005, vol. 36, no. 1, pp. 308-311.
[1.27] A. E. Gamal, H. Eltoukhy, “CMOS Image Sensors”, IEEE Circuits Devices Mag., vol. 21, no. 3, pp. 6-20, 2005.
Chapter 2
[2.1] M. N. Helmus, P. Gammel, F. Allen, and P. Migliorato, “Nanotechnology-Enable Chemical Sensors and Biosensor”, American Lab., vol. 38, no. 6, pp. 34-38, 2006.
[2.2] M. J. Powell, “The physics of amorphous-silicon thin-film transistors”, IEEE Trans. Electron Devices, vol. 36, no. 12, pp. 2753-2763, 1989.
[2.3] P. G. LeComber, W. E. Spear, and A. Ghaith, “Amorphous-silicon field-effect device and possible application”, IEEE Electron. Lett., vol. 15, no. 6, pp. 179-181, 1979.
[2.4] J. Kanicki, “Role of hydrogen in silicon nitride films prepared by various deposition techniques”, in Proceedings of Mat. Res. Soc. Sym., 1988, vol. 118, pp. 671-677.
[2.5] S. Tomita, S. Jurichich, and K. C. Saraswat, “Transistor sizing for AMLCD integrated TFT drive circuits”, J. Soc. Inf. Display, vol. 5, no. 4, pp. 399-404, 1997.
[2.6] Y. Yamaji, M. Ikeda, M. Akiyama, and T. Endo, “Characterization of photo leakage current of amorphous silicon thin-film transistors”, Jpn. J. Appl. Phys., vol. 38, pp. 6202-6206, 1999.
[2.7] D. L. Staebler and C. R. Wronski, “Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon”, J. Appl. Phys., vol. 51, no. 6, pp. 3262-3268, 1980.
[2.8] S. Martin, J. Kanicki, and Y. Ugai, “Top-gate a-Si:H TFTs: a-Si:H thickness effect and electrical instabilities”, in Proceedings of IDRC, 1999, pp. 45-48.
[2.9] S. Martin, C. S. Chiang, J. Y. Nahm, T. Li, J. Kanicki, and Y. Ugai, “Influence of the amorphous silicon thickness on top-gate thin-film transistor electrical performance”, Jpn. J. Appl. Phys., vol. 40, pp. 530-537, 2001.
[2.10] M. LeContellec, F. Maurice, J. Richard, B. Vinouze, and F. Richou, “Very simple a-Si:H TFT fabrication process for LCD-TV application”, J. Non-Cryst. Solids, vol. 97 & 98, pp. 287-300, 1987.
[2.11] S. Kawai, Y. Nasu, and Yanagisawa, “A self-aligned amorphous-silicon TFT for LCD panels”, Fujitsu Lab., Display Devices Lab., Fujitsu Scientific Tech. J1, vol. 21, pp. 204-210, 1985.
[2.12] H. H. Busta, J. E. Pogemiller, R. W. Standley, and K. D. Mackenzie, “Self-aligned bottom-gate submicrometer-channel-length a-Si:H thin-film transistors”, IEEE Trans. Electron Devices, vol. 36, pp. 2883-2888, 1989.
[2.13] J. H. Kim and J. Kanicki, “Two photo-mask fully self-aligned Al bottom-gate a-Si:H TFTs” in Proceedings of IDRC, 2001, pp. 439-442.
[2.14] J. Kanicki, E. Hasan, J. Griffith, T. Takamori, and J. C. Tsang, “Properties of high-conductivity phosphorous-doped hydrogenated microcrystalline silicon and application in thin-film transistor technology”, in Proceedings of Mat. Res. Soc. Sym., 1989, vol. 149, pp. 239-246.
[2.15] M. J. Powell and J. W. Orton, “Characteristics of amorphous silicon staggered-electrode thin-film transistors”, Appl. Phys. Lett., vol. 45, no. 2, pp. 171-173, 1984.
[2.16] S. M. GadelRab and S. G. Chamberlain, “The effects of metal-n+/interface and space-charge-limited conduction on the performance of amorphous silicon thin-film transistors”, IEEE Trans. Electron Devices, vol. 41, no. 3, pp. 462-464, 1994.
[2.17] R. A. Street, “Doping and the Fermi energy in amorphous silicon”, Phys. Rev. Lett., vol. 49, pp. 1187, 1982.
[2.18] W. E. Howard, “Limitations and prospects of a-Si:H TFTs”, J. Soc. Inf. Display, vol. 3, no. 3, pp. 127-132, 1995.
[2.19] I. Watanabe and Y. Gotoh, “Driver IC packaging technologies using anisotropic conductive films in flat panel display”, in SID Sym. Dig. Tech. Papers, 2008, vol. 39, no. 1, pp. 240-243.
[2.20] I.-Wei Wu, “High-definition displays and technology trends in TFT-LCDs”, J. Soc. Inf. Display, vol. 2, no. 1, pp. 1-14, 1994.
[2.21] S. H. Kim, E. B. Kim, H. Y. Choi, D. H. Kang, W. H. Park, J. H. Oh, E. Y. Lee, S. H. Lee, D. H. Oh, K. H. Kim, M. H. Kang, J. H. Hur, J. Jang, J. W. Lee, J. R. Choi, S. H. Ahn, and S. W. Hong, “A 2 inch a-Si:H TFT-LCD with backlight control TFT sensors”, in SID Sym. Dig. Tech. Papers, 2007, vol. 38, no. 1, pp. 1093-1096.
[2.22] J. Lan, A. Cole, J. VanZandt, A. Dickinson, F. Van de Ven, N. Bird, A. Badano, and J. Kanicki, “Fingerprint imager based on a-Si:H active-matrix photo-diode arrays”, in IEEE IEDM Tech. Dig., 2000, pp. 419-422.
[2.23] T. Saika, N. Kaiji, I. Gofuku, K. Hatanaka, K. Ichihashi, and T. Komatsu, “Integrated a-Si:H linear image sensor using TFT type photo-sensor”, in Ext. Abstr. 19th Conf. Solid State Devices Mat. (Tokyo), 1987, pp. 509-510.
[2.24] E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V – Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Phil. Mag., vol. 22, pp. 903-922, 1970.
[2.25] S. Martin, J. Kanicki, N. Szydlo, and A. Rolland, “Analysis of the amorphous silicon thin-film transistors behavior in the dark and under illumination: sensitivity to geometric parameters”, in Proceedings of IDRC, 1997, pp. 266-269.
[2.26] S. Martin, J. Kanicki, N. Szydlo, and A. Rolland, “Analysis of the amorphous silicon thin-film transistors behavior under illumination”, in Proceedings of the AM-LCD, 1997, pp. 211-214.
[2.27] C. Y. Chen and J. Kanicki, “Simulation of influence of density of states in a-Si:H on electrical performance of a-Si:H thin-film transistors”, in Proceedings of AM-LCD, 1995, pp. 46-49.
[2.28] R. Oritsuki, T. Horii, A. Sasano, K. Tsutsui, T. Koizumi, Y. Kaneko, and T. Tsukada, “Threshold voltage shift of amorphous silicon thin-film transistors during pulse operation”, Jpn. J. Appl. Phys., vol. 30, pp. 3719-3723, 1991.
[2.29] J. D. Gallezot, S. Martin, and J. Kanicki, “Photosensitivity of a-Si:H TFTs”, in Proceedings of IDRC, 2001, pp. 407-410.
[2.30] M. J. Powell, D. C. Easton, and D. M. Nicholls, “Annealing and light-induced changes in the filed-effect conductance of amorphous silicon”, J. Appl. Phys., vol. 53, no. 7, pp. 5068-5078, 1982.
[2.31] A. R. Hepburn, J. M. Marshall, C. Main, M. J. Powell, and C. can Berkel, “Metastable defects in amorphous-silicon thin-film transistors”, Phys. Rev. Lett., vol. 56, no. 20, pp. 2215-2218, 1986.
[2.32] J. H. Kim, J. K. Lee, Y. G. Chang, and B. J. Moon, “Fingerprint scanner using a-Si:H TFT-array”, in SID Sym. Dig. Tech. Papers, vol. 31, no. 1, pp. 353-355, 2000.
[2.33] W. den Boer, A. Abileah, P. Green, T. Larsson, S. Robinson, and T. Nguyen, “Active matrix LCD with integrated optical touch screen”, in SID Sym. Dig. Tech. Papers, vol. 34, no. 1, pp. 1494-1497, 2003.
[2.34] S. H. Kim, E. B. Kim, H. Y. Choi, M. H. Kang, J. H. Hur, and J. Jang, “A coplanar hydrogenated amorphous silicon thin-film transistor for controlling backlight brightness of liquid-crystal display”, Solid-State Electron., vol. 52, pp. 478-481, 2008.
[2.35] C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device”, in SID Sym. Dig. Tech. Papers, vol. 30, no. 1, pp. 528-531, 1999.
[2.36] R. A. Street, “Measurements of depletion layers in hydrogenated amorphous silicon”, Phys. Rev. B, vol. 27, pp. 4924-4932, 1983.
[2.37] J. H. Lan, and J. Kanicki, “Planarization technology of a-Si:H TFTs for AM-LCDs”, in Display Technology II, Proceedings of SPIE, 1998, vol. 3421, pp. 170-182.
[2.38] J. I. Ryu, S. H. Won, J. Jang, G. J. Jang, C. W. Lee, and S. T. Jung, “A novel amorphous silicon phototransistor array for name card reading”, in SID Sym. Dig. Tech. Papers, 2000, vol. 31, no. 1, pp. 356-359.
[2.39] K. C. Lee, S. H. Moon, B. Berkeley, and S. S. Kim, “LED-backlight feedback control system with integrated amorphous-silicon sensor color sensor on a LCD panel”, J. Soc. Inf. Display, vol. 14, no. 2, pp. 161-168, 2006.
[2.40] T. Eguchi, Y. Hiyoshi, E. Kanda, H. Sera, T. Ozawa, T. Miyazawa, and T. Matsumoto, “A 1300-dpi optical image sensor using an a-Si:H photo diode array driven by LTPS TFTs”, in SID Sym. Dig. Tech. Papers, 2007, vol. 38, no. 1, pp. 1097-1100.
[2.41] N. Yamauchi, Y. Inaba, and M. Okamura, “An integrated photodetector-amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors”, IEEE Photon. Technol. Lett., vol. 5, no. 3, pp. 319-321, 1993.
[2.42] C. M. Fortman, T. Zhou, C. Malone, M. Gunes, and C. R. Wronski, “Deposition conditions, hydrogen content, and the Staebler-Wronski effect in amorphous silicon”, in Proceedings of IEEE Photovoltaic Specialists Conference, 1990, vol. 2, pp. 1648-1652.
[2.43] S. C. Deane, R. B. Wehrspohn, and M. J. Powell, “Unification of the time and temperature dependence of dangling-bond-defect creation and removal in amorphous-silicon thin-film transistors”, Phys. Rev. B, vol. 58, pp. 12625-12628, 1998.
[2.44] C. S. Chiang, J. Kanicki, and K. Takechi, “Electrical instability of hydrogenated amorphous silicon thin-film transistors for AM-LCDs”, Jpn, J. Appl. Phys., vol. 37, pp. 4704-4710, 1998.
[2.45] S. Morozumi, K. Oguchi, et al., ”Black-and-white and color LC video displays addressed by poly-Si TFTs”, in SID Sym. Dig. Tech. Papers, 1983, pp. 156.
[2.46] T. Hishimura et al., in Proceedings of Mat. Res. Sym., vol. 33, pp. 221, 1984.
[2.47] M. Osame, M. Azami, J. Koyama, Y. Ogata, H. Ohtani, and S. Yamazaki, “A 2.6-in. poly-Si TFT-LCD HDTV display with monolithic integrated 8-bit digital data drivers”, in SID Sym. Dig. Tech. Papers, 1998, vol. 29, no. 1, pp. 1059-1062.
[2.48] L. W. MacDonald et al., ”Display Systems: Design and Applications”, John Wiley & Sons, 1997.
[2.49] B. E. Young and R. Young, “Cost and yield model for comparing a-Si and poly-Si displays”, in SID Sym. Dig. Tech. Papers, 1998, vol. 29, no. 1, pp. 1193-1196.
[2.50] A. G. Lewis, I. W. Wu, T. Y. Huang, A. Chiang, and R. H. Bruce, “Active matrix liquid crystal display design using low and high temperature processed polysilicon TFTs”, in IEEE IEDM Tech. Dig., 1990, pp. 11-14.
[2.51] A. Misumi, K. Sunahara, H. Tanabe, and M. Kumada, “Evaporated polycrystalline-silicon thin-film transistors on glass”, in IEEE IEDM Tech. Dig., 1981, vol. 27, pp. 305-308.
[2.52] K. Goshima, H. Toyoda, T. Kojima, M. Nishitani, M. Kitagawa, H. Yamazoe, and H. Sugai, “Lower temperature deposition of polycrystalline silicon films for a modified inductively coupled silane plasma”, Jpn. J. Appl. Phys., vol. 38, pp.3655-3659, 1999.
[2.53] R. E. I. Schropp, J. K. Rath, B. Stannowski, C. H. M. Van Der Werf, Y. Chen,, and S. Wagner, “Low temperature poly-Si layers deposited by hot wire CVD yielding a mobility of 4.0 cm2-1s-1 in top gate thin film transistors”, in Proceedings of Mat. Res. Soc. Sym., 2000, vol. 609, pp. A31.3.
[2.54] M. Kimura, D. Abe, S. Inoue, and T. Shimoda, “Dependence of poly-Si TFT characteristics on oxide interface traps and grain boundary traps and its application to diagnosis of fabrication process”, in SID Sym. Dig. Tech. Papers, 2004, vol. 35, no. 1, pp. 220-223.
[2.55] T. Asano, K. Aoto, and Y. Okada, “Enhanced solid-phase crystallization of amorphous Si by plasma treatment using reactive ion etching”, Jpn. J. Appl. Phys., vol. 36, pp. 1415-1419, 1997.
[2.56] S. W. Lee, Y. C. Jeon, and S. K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett., vol. 66, no. 13, pp. 1671-1673, 1995.
[2.57] H. Kuriyama, T. Nohda, Y. Aya, T. Kuwahara, K. Wakisaka, S. Kiyama, and S. Tsuda, “Comprehensive study of lateral grain growth in poly-Si films by excimer laser annealing and its application to thin film transistors”, Jpn. J. Appl. Phys., vol. 33, pp. 5657-5662, 1994.
[2.58] A. Kohno, T. Sameshima, N. Sano, M. Sekiya, and M. Hara, “High performance poly-Si TFTs fabricated using pulsed laser annealing and remote plasma CVD with low temperature processing”, IEEE Trans. Electron Devices, vol. 42, no. 2, pp. 251-257, 1995.
[2.59] M. Dutoit and F. Solberger, “Lateral polysilicon p-n diodes”, J. Electrochem. Soc., vol. 125, pp. 1648-1651, 1978.
[2.60] M. Stewart and M. K. Hatalis, “High performance gated lateral polysilicon PIN diodes”, Solid-State Electron., vol. 44, pp. 1613-1619, 2000.
[2.61] F. Matsuki, K. Hashimoto, K. Sano, D. Yeates, J. R. Ayers, M. Edwards, and A. Steer, “Integrated ambient light sensor in LTPS AMLCDs”, in SID Sym. Dig. Tech. Papers, 2007, vol. 38, no. 1, pp. 290-193.
[2.62] D. J. McCulloch and S. D. Brotherton, “Surface roughness effects in laser-crystallized polycrystalline silicon”, Appl. Phys. Lett., vol. 66, no. 16, pp. 2060-2062, 1995.
[2.63] C. H. Lai, L. W. Lai, W. J. Chiang, and Y. C. King, “A logarithmic response complementary metal oxide semiconductor image sensor with parasitic p-n-p bipolar junction transistor”, Jpn. J. Appl. Phys., vol. 45, no. 4B, pp. 3251-3255, 2006.
[2.64] Y. Uryu and T. Asano, “SOI-MOSFET/diode composite photodetection device”, Jpn. J. Appl. Phys., vol. 40, pp. 2897-2902, 2001.
[2.65] A. Afzalizn and D. Flandre, “Measurements, modeling and electrical simulations of lateral PIN photodiodes in thin film-SOI for high quantum efficiency and high selectivity in the UV range”, in Proceeding of ESSDERC Conference, 2003, pp. 55-58.
[2.66] K. Kabayashi and Y. Niwano, “Photo-leakage current of poly-Si thin film transistors with offset and lightly doped drain structure”, Jpn. J. Appl. Phys., vol. 38, pp. 5757-5761, 1999.
[2.67] H. Yamamoto, K. Taniguchi, and C. Hamaguchi, “High-sensitivity SOI MOS photodetector with self-amplification”, Jpn. J. Appl. Phys., vol. 35, pp. 1382-1386, 1996.
[2.68] W. Zhang and M. Chan, “A high gain n-well/gate tied pMOSFET image sensor fabricated from a standard CMOS process”, IEEE Trans. Electron Devices, vol. 48, no. 6, pp. 1097-1102, 2001.
[2.69] W. J. Chiang, C. J. Lin, and Y. C. King, “Embedded optical sensor using gate-body-tied thin-film transistor on low-temperature poly-silicon display panel”, Electrochem. And Solid-State Lett., vol. 12, no. 5, pp. J51-J53, 2009.
[2.70] A. Abileah, W. den Boer, T. Larsson, T. Baker, S. Robinson, R. Siegel, N. Fickenscher, B. Leback, T. Griffin, and P. Green, “Integrated optical touch panel in a 14.1” AMLCD”, in SID Sym. Dig. Tech. Papers, 2004, vol. 35, no. 1, pp. 1544-1547.
[2.71] K. Maeda, T. Nagai, T. Sakai, N. Kuwabara, S. Nishi, M. Satoh, T. Matsuo, S. Kamiya, H. Katoh, M. Ohue, Y. Kubota, H. Komiya, T. Muramatsu, M. Katayama, P. Zebedee, S. Desumvila, C. J. Brown, H. Walton, and M. Brownlow, “The system-LCD with monolithic ambient-light sensor system”, in SID Sym. Dig. Tech. Papers, 2005, vol. 36, no. 1, pp. 356-359.
[2.72] K. C. Lee, Y. J. Park, H. Ko, S. H. Moon, J. H. Park, B. Berkeley, and S. S. Kim, “Integrated amorphous silicon color sensor on LCD panel for LED backlight feedback control system”, in SID Sym. Dig. Tech. Papers, 2005, vol. 36, no. 1, pp. 1376-1379.
[2.73] H. Hayashi, T. Nakamura, N. Tada, T. Imai, M. Yoshida, and H. Nakamura, “Optical sensor embedded input display usable under hight-ambient-light conditions”, in SID Sym. Dig. Tech. Papers, 2007, vol. 38, no. 1, pp. 1105-1108.
[2.74] H. S. Park, T. J. Ha, Y. Hong, and M. K. Han, “A self-reset ambient-light sensor system for low-temperature polycrystalline-silicon active-matrix displays”, J. Soc. Inf. Display, vol. 16, no. 8, pp. 889-893, 2008.
Chapter 3
[3.1] C. Xu, C. Shen, W. Wu, and M. Chan, “Backside-illuminated lateral PIN photodiode for CMOS image sensor on SOS substrate”, IEEE Trans. Electron Device, vol. 52, no. 6, pp. 1110-1115, 2005.
[3.2] K. Rajkanan, R. Singh, and J. Shewchun, “Absorption coefficient of silicon for solar cell calculations”, Solid-State Electron., vol. 22, pp. 793-795, 1979.
[3.3] J. Linnros and N. Lalic, “High quantum efficiency for a porous silicon light emitting diode under pulsed operation”, Appl. Phys. Lett., vol. 66, no. 22, pp. 3048-3050, 1995.
[3.4] P. M. Fauchet, “Progress toward nanoscale silicon light emitters”, IEEE J. Quantum Electron., vol. 4, no. 6, pp. 1020-1028, 1998.
[3.5] G. Y. Sung, N. M. Park, T. Y. Kim, K. H. Kim, K. S. Cho, and J. H. Shin, “High efficiency silicon visible light emitter using silicon nanocrystals in silicon nitride matrix and transparent doping layer”, in Proceedings of Group IV Photonics, IEEE Intl. Conf., 2005, pp. 51-53.
[3.6] L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature, vol. 408, no. 6811, pp. 440-444, 2000.
[3.7] J. Heitmann, L. Yi, R. Scholz, and M. Zacharias, “Si based highly luminescent photonic structures”, in Digest of Conf. on Quantum Electronics and Laser Science – Technical Digest Series, 2002, pp. 249-250.
[3.8] H. S. Nalwa, “Nanostructured Materials and Nanotechnology”, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, 2001, pp. 387.
[3.9] N. A. Hill and K. B. Whaley, “Size dependence of excitons in silicon nanocrystals,” Phys. Rev. Lett., vol. 75, no. 6, pp. 1130-1133, Aug. 1995.
[3.10] T. van Buuren, L. N. Dinh, L. L. Chase, W. J. Siekhaus, and L. J. Terminello, “Changes in the electronic properties of Si nanocrystals as a function of particle size,” Phys. Rev. Lett., vol. 80, no. 17, pp. 3803–499 3806, Apr. 1998.
[3.11] T. Matsumoto, J. I. Suzuki,M. Ohnuma, Y. Kanemitsu, and Y.Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Phys. Rev. B, Condens. Matter, vol. 63, no. 19, pp. 195 322-195 326, 2001.
[3.12] M. S. Hybertsen, “Absorption and emission of light in nanoscale silicon structures,” Phys. Rev. Lett., vol. 72, no. 10, pp. 1514-1517, 1994.
[3.13] J. L. Yeh, H. L. Chen, A. Shih, and S. C. Lee, “Formation of Si nanoclusters in amorphous silicon thin films by excimer laser annealing”, Electron. Lett., vol. 35, no. 23, pp. 2058-2059, 1999.
[3.14] C. T. Lee and C. H. Lin, “Si nanocrystals embedded in Si suboxide matrix grown by laser-assisted CVD at room temperature”, Jpn. J. Appl. Phys., vol. 43, no. 5A, pp. 2793–2794, 2004.
[3.15] S. J. Shen, C. J. Lin, and C. H. Hsu, “Ultra fast write speed, long refresh time, low power F–N operated volatile memory cell with stacked nanocrystalline Si film”, in IEDM Tech. Digest, 1996, pp.515-518.
[3.16] S. V. Gaponenko, “Optical properties of semiconductor nanocrystals”, Cambridge Studies in Modern Optics, Cambridge University Press, 1998, pp. 84.
[3.17] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, vol. 46, no. 23, pp. 15578-15581, 1992.
[3.18] T. Takagahara, “Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots”, Phys. Rev. B, vol. 47, no. 8. pp. 4569-4584, 1993.
[3.19] D. B. Tran Thoai, Y. Z. Hu, and S. W. Koch, “Influence of the confinement potential on the electron-hole-pair states in semiconductor microcrystallites”, Phys. Rev. B, vol. 42, no. 17, pp. 11261-11266, 1990.
[3.20] T. Takagahara, “Electron-phonon interactions in semiconductor nanocrystals”, J. Lumin., vol. 70, no. 1-6, pp. 129-143, 1996.
[3.21] T. Takahara and K. Takeda, “Excitonic exchange splitting and Stokes shift in Si nanocrystals and Si clusters”, Phys. Rev. B, vol. 53, no. 8, pp. R4205-R4208, 1996.
[3.22] Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape”, Phys. Rev. B, vol. 38, no. 14, pp. 9797-9805, 1988.
[3.23] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, “Quantum size effects on photoluminescence in ultrafine Si particles”, Appl. Phys. Lett., vol. 56, no. 24, pp. 2379-2380, 1990.
[3.24] T. Matsumoto, J. I. Suzuki,M. Ohnuma, Y. Kanemitsu, and Y.Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption”, Phys. Rev. B, Condens. Matter, vol. 63, no. 19, pp. 195322-195 326, 2001.
[3.25] S. J. Shen, C. J. Lin, and C. H. Hsu, “Ultra fast write speed, long refresh time, low power F–N operated volatile memory cell with stacked nanocrystalline Si film”, in IEDM Tech. Dig., 1996, pp. 515-518.
[3.26] C. J. Lin, C. C. H. Hsu, H. H. Chen, G. Hong, and L. S. Lu, “Enhanced tunneling characteristics of PECVD silicon-rich-oxide (SRO) for the application in low voltage flash EEPROM,” IEEE Trans. Electron Devices, vol. 43, no. 11, pp. 2021-2023, 1996.
[3.27] W. Vollmann, “Poole-Frenkel conduction in insulators of large impurity densities”, Phys. Stat. Sol. (a), vol. 22, no. 1, pp. 195-203, 2974.
[3.28] J. De la Torre, A. Souifi, M. Lemiti, A. Poncet, C. Busseret, G. Guillot, G. Bremond, O. Gonzalez, B. Garrido, and J. R. Morante, “Optical and electrical transport mechanisms in Si-nanocrystal-based LEDs”, Physica E: Low-Dimensional Syst. Nanostructures, vol. 17, pp. 604–606, 2003.
[3.29] V. I. Klimov, “Semiconductor and Metal Nanocrystals, Synthesis and Electronic and Optical Properties”, Marcel Dekker, Inc., New York, Basel, 2004, pp.265.
[3.30] L. Canham, “Gaining light from silicon”, Nature, vol. 408, pp. 411-412, 2000.
[3.31] C. Jin, J. Yu, W. Qin, J. Zhao, F. Zhou, K. Dou, J.Liu, and S. Huang, “Photodarkening effect and optical nonlinearity in CdSSe-doped glasses”, J. Lumin., vol. 53, pp. 483-486, 1992.
[3.32] P. Roussignol, M. Kull, D. Ricard, F. de Rougemont, R. Frey, and C. Flytzanis, “Time-resolved direct observation of Auger recombination in semiconductor-doped glasses,” Appl. Phys. Lett., vol. 51, no. 23, pp. 1882-1884, 1987.
[3.33] D. I. Chepic, AL. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, “Auger ionization of semiconductor quantum drops in a glass matrix”, J. Lumin., vol. 47, pp. 113-127, 1990.
[3.34] S. V. Gaponenko, I. N. Germanenko, V. P. Gribkovskii, M. I. Vasiliev, and V. A. Tsekhomskii, “Nonlinear absorption of semiconducting microcrystallites under quantum confinement: Coexistence of reversible and irreversible effects”, in Proceeding of SPIE, 1992, vol. 1807, pp. 65-73.
[3.35] S. M. Prokes, “Light emission in thermally oxidized porous silicon: Evidence for oxide-related luminescence”, Appl. Phys. Lett., vol. 62, no. 25, pp. 3244-3246, 1993.
[3.36] S. M. Prokes and O. J. Glembocki, “Role of interfacial oxide-related defects in the red-light emission in porous silicon”, Phys. Rev. B, vol. 49, no. 3, pp. 2238-2241, 1994.
[3.37] J. Malhotra, D. J. Hagan, and B. G. Potter, “Laser-induced darkening in semiconductor-doped glasses”, J. Opt. Soc. Am. B, vol. 8, pp. 1531-1536, 1991.
[3.38] S. V. Gaponenko, E. P. Petrov, U. Woggon, O. Wind, C. Klingshirn, Y. H. Xie, I. N. Germanenko, and A. P. Stupak, “Steady-state and time-resolved spectroscopy of porous silicon”, J. Lumin., vol. 70, pp. 364-376, 1996.
[3.39] S. H. Choi, “Bias- and photo-induced charging effects in SiO2 Films containing Si nanocrystals”, J. Kor. Phys. Soc., vol. 37, no. 4, pp. 461-465, 2000.
[3.40] L. Bellegie and L. Banyai, “Theory of exciton-population-induced nonlinear absorption in large microcrystallites”, Phys. Rev. B, vol. 44, no. 16, pp. 8785-8793, 1991.
[3.41] R. Zimmerman, “Many-Particle Theory of Highly Excited Semiconductors”, Leipzig: Teubner, 1988.
[3.42] U. Woggon, “Optical Properties of Semiconductor Quantum Dots”, Berlin: Springer, 1996.
[3.43] T. Takagahara, “Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots”, Phys. Rev. B, vol. 36, no. 17, pp. 9293-9296, 1987.
[3.44] L. Banyai and S. W. Koch, “Absorption blue shift in laser excited semiconductor microspheres”, Phys. Rev. Lett., vol. 57, no. 21, pp. 2722-2724, 1986.
[3.45] L. G. Zimin, S. V. Gaponenko, V. Yu. Lebed, I. E. Malinovsky, I. N. Germanenko, E. E. Podorova, and V. A. Tsekhomsky, ”Copper chloride nonlinear optical absorption under quantum confinement”, J. Mod. Opt., vol. 37, pp. 829-834, 1990.
[3.46] S. V. Gaponenko, V. P. Gribkovskii, L. G. Zimin, and N. K. Nikeenko, ”Influence of recombination via traps on absorption saturation in semiconductors”, J. Appl. Spectr., vol. 40, pp. 614-618, 1984.
Chapter 4
[4.1] F. Lemmi, M. Mulato, J. Ho, R. Lau, J. P. Lu, and R. A. Street, “Active matrix of amorphous silicon multijunction color sensors for document imaging,” Appl. Phys. Lett., vol. 78, no. 10, pp. 1334-1336, 2001.
[4.2] D. Fish, N. Young, S. Deane, A. Steer, D. George, A. Giraldo, H. Lifka, O. Gielkens, and W. Oepts, “Optical feedback for AMOLED display compensation using LTPS and a-Si:H technologies,” in Proc. SID Symp. Dig. Tech. Papers, 2005, vol. 36, no. 1, pp. 1340-1343.
[4.3] S. H. Kim, E. B. Kim, J. H. Oh, J. H. Hur, and J. Jang, “a 2-in a-Si:H TFT-LCD with embedded backlight control TFT sensors with various channel widths”, J. Soc. Inf. Display, vol. 16, no. 3, pp. 415-419, 2008.
[4.4] H. S. Lim and O. K. Kwon, “Ambient light sensing circuit with low-temperature polycrystalline silicon p-intrinsic-n diode and source follower for auto brightness control,” Jpn. J. Appl. Phys., vol. 47, no. 3, pp. 1919-1923, 2008.
[4.5] A. Afzalian and D. Flandre, “Physical Modeling and Design of Thin-Film SOI Lateral PIN Photodiodes,” IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1116–1122, 2005.
[4.6] T. Sameshima, “Progress in fabrication technologies of polycrystalline-silicon thin-film transistors at low temperatures”, J. Soc. Inf. Display, vol. 13, no. 3, pp. 233-239, 2005.
[4.7] M. C. Rossi, S. Salvatori, F. Galluzzi, and G. Conte, “Laser-induced nanocrystalline silicon formation in a-SiO matrices”, Mater. Sci. Eng. B, vol. 69/70, pp. 299-302, 2000.
[4.8] D. Cha, J. H. Shin, I. H. Song, and M. K. Han, “Enhanced formation of luminescent nanocrystal Si embedded in Si/SiO2 superlattice by excimer laser irradiation”, Appl. Phys. Lett., vol. 84, no. 8, pp. 1287-1289, 2004.
[4.9] S. Inoue and H. Ohshima, “New degradation phenomenon in wide channel poly-Si TFTs fabricated by low temperature process”, in IEDM Tech. Dig., 1996, pp. 781-784.
[4.10] Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura, and Y. Tsuchihashi, “Reliability of low temperature poly-silicon TFTs under inverter operation”, IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2370-2374, 2001.
[4.11] S. I. Hsieh, H. Y. Liang, C. J. Lin, and Y. C. King, “Stress-induced width-dependent degradation of low-temperature polycrystalline silicon thin-film transistor”, Appl. Phys. Lett., vol. 90, no. 18, pp. 183502, 2007.
[4.12] K. Yuda, K. Sera, F. Uesugi, I. Nishiyama, and F. Okumura, “Reliability improvement in low-temperature processed poly-Si TFTs for AMLCDs”, in IEDM Tech. Dig., 1994, pp. 519-522.
[4.13] A. Takahami, A. Ishida, J. Tsutsumi, T. Nishibe, and N. Ibaraki, “Threshold voltage shift under the gate bias stress in low-temperature poly-silicon TFT with the thin gate oxide film”, in Proceedings of AMLCD, 2000, pp. 45.
[4.14] M. Koyanagi, T. Shimatani, M. Tsuno, T. Matsumoto, N. Kato, and S. Yamada, “Evaluation of self-heating effect in poly-Si TFT using quasi three-dimensional temperature analysis”, in IEEE IEDM Tech. Dig., 1993, pp. 97-100.
[4.15] C. M. Uang, H. M. Chuang, S. F. Tsai, K. B. Thei, P. H. Lai, S. I Fu, Y. Y. Tasi, and W. C. Liu, “Temperature-depdent characteristics of diffused and polysilicon resistors for ULSI applications”, in Proceedings of IEEE IWJT, 2004, pp. 293-296.
[4.16] Y. Omura and K. Komiya, “Transport characteristics of posthard breakdown thin silicon oxide films and consideration of physical models,” J. Appl. Phys., vol. 91, no. 7, pp. 4298-4306, 2002.
[4.17] M. Kull, J. L. Coutaz, and G.Manneberg, “Absorption saturation and photodarkening in semiconductor-doped glasses”, Appl. Phys. Lett., vol. 54, no. 19, pp. 1830-1832, May 1989.
[4.18] P. Horan and B. Werner, “Photodarkening effect and the optical nonlinearity in a quantum-confined, semiconductor-doped glass”, J. Opt. Soc. Amer. B, Opt. Phys., vol. 7, no. 3, pp. 304-308, Mar. 1990.
[4.19] L. C. Hu, A. C. Kang, T. Y. Wu, J. R. Shih, Y. F. Lin, K. Wu, and Y. C. King, “Efficient low-temperature data retention lifetime prediction for split-gate flash memories using a voltage acceleration methodology”, IEEE Trans. Device Mater. Rel., vol. 6, no. 4, pp. 528-533, 2006.
[4.20] M. V. Artemyev, V. Sperling, and U. Woggon, “Electroluminescence in thin solid films of closely packed CdS nanocrystals”, J. Appl. Phys., vol. 78, no. 10, pp. 6975-6977, 1997.
[4.21] H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly (phenylene vinylene) and inorganic CdSe nanocrystals”, J. Appl. Phys., vol. 83, no. 12, pp. 7965-7974, 1998.
[4.22] A. Morales, J. Barreto, C. Dominguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD”, Physica E: Low-dimensional Systems and Nanostructures, vol. 38, no. 1-2, pp. 54-58, 2007.
[4.23] B. Diaz, J. A. Rodriguesz, M. Riera, A. Llobera, C. Dominguez, and J. Tutor, “Optical properties of silicon rich silicon oxides obtained by PECVD”, Microelectronics Journal, vol. 35, no. 1, pp. 65-67, 2004.
Chapter 5
[5.1] X. Guan, X. Liu, and R. Han, “A poly-silicon TFT model for circuit simulation”, IEEE Int. Conf. on Solid-State and Integrated Circuit Tech., 1995, pp. 604-604.
[5.2] S. Jagar, C. F. Cheng, S. Zhang, H. Wang, M. C. Poon, C.W. Kok, and M. Chan, “A SPICE model for thin-film transistors fabricated on grain-enhanced polysilicon film” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1103-1108, 2003.
[5.3] M. Tabet, N. Tu, and R. Hornsey, “Modeling and characterization of logarithmic complementary metal-oxide-semiconductor active pixel sensor”, J. Vac. Sci. Tech. A, vol. 18, no. 3, pp. 1006-1009, 2000.
[5.4] T. Reiner, B. Mishori, T. Leitner, A. Horovitz, Y. Vainbaum, M. Hakim, A. Lahav, S. Shapira, A. Fenigstein, “CMOS image sensor 3T Nwell photodiode pixel SPICE model”, IEEE Convention of Electrical and Electronics Engineers in Israel, 2004, pp. 161-164.
[5.5] S. U. Ay, “Electrical property modeling of photodiode type CMOS active pixel sensor (APS)”, IEEE Midwest Sym. on Circuits and System, 2005, pp. 371-375.
[5.6] W. J. Chiang, H. C. Chen, and Y. C. King, “A new photodiode model for SPICE simulation of complementary metal-oxide-semiconductor image sensors”, Jpn. J. Appl. Phys., vol. 46, no. 4B, pp. 2352-2359, 2007.
[5.7] F. P. Heiman and G. Warfield, “The effects of oxide traps on the MOS capacitance”, IEEE Trans. Electron Devices, vol. 12, no. 4, pp. 167-178, 1965.
[5.8] K. H. Zaininger and G. Warfield, “Limitations of the MOS capacitance method for the determination of semiconductor surface properties”, IEEE Trans. Electron Devices, vol. 12, no. 4, pp. 179-193, 1965.
[5.9] A. A. Middleton and N. S. Wingreen, “Collective transport in arrays of small metallic dots”, Phys. Rev. Lett., vol. 71, pp. 3198-3201, 1993.
[5.10] R. H. Nixon, S. E. Kemeny, B. Pain, C. O. Staller, and E. R. Fossum, “256 □ 256 CMOS active pixel sensor camera-on-a-chip”, IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 2046-2050, 1996.
[5.11] E. R. Fossum, S. Mendis, and S. E. Kemeny, ”Active pixel sensor with intra-pixel charge transfer,” U.S. Patent 5471515, Nov. 28, 1995.
[5.12] H. Takahashi, M. Kinoshita, K. Morita, T. Shirai, T. Sato, T. Kimura, H. Yuzurihara, S. Inoue, and S. Matsumoto, “A 3.9-μm pixel pitch VGA format 10-b digital output CMOS image sensor with 1.5 transistor/pixel”, IEEE J. Solid-State Circuit, vol. 39, no. 12, pp. 2417-2425, 2004.
[5.13] M. Mori, M. Katsuno, S. Kasuga, T. Murata, and T. Yamaguchi, ”1/4-inch 2-mpixel MOS image sensor with 1.75 transistors/pixel”, IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2426-2430, 2004.
[5.14] T. Nakamura, H. Hayashi, M. Yoshida, N. Tada, M. Ishikawa, T. Motai, and T. Nishibe, “A touch panel function integrated LCD including LTPS A/D converter”, in SID Sym. Dig. Tech. Papers, 2005, vol. 36, no. 1, pp. 1054-1055.
[5.15] H. Nakamura, T. Nakamura, H. Hayashi, N. Tada, M. Yoshida, M. Ishikawa, T. Motai, and T. Nishibe, “Touch panel function integrated LCD using LTPS technology”, in Proceedings of the 12th International Display Workshops, 2005, pp. 1003-1006.