簡易檢索 / 詳目顯示

研究生: 顧書源
Ku, Shu-Yuan
論文名稱: 四級銨鹽為基礎之室溫離子液體作為電解質溶劑於染料敏化太陽能電池上之應用
Application of quaternary ammonium salts based room temperature ionic liquid as electrolyte solvents in dye-sensitized solar cells
指導教授: 呂世源
Lu, Shih-Yuan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 119
中文關鍵詞: 染料敏化太陽能電池液體電解質室溫離子液體離子四級銨鹽
外文關鍵詞: dye-sensitized solar cells, ionic liquid electrolyte, room temperature ionic liquid, quaternary ammonium salts
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要之目的為利用四級銨鹽為基礎之室溫離子液體作為染料敏化太陽能電池之電解質。現今文獻中依然是傳統液態電解質才能達到約11% 的最佳光電轉換效率,其理由大致上為液態電解質具有擴散速率快、導電度高、黏度低等優勢。但是這些有機溶劑都具有高的揮發性,會造成電池的壽命減短、電池漏液的問題而進一步汙染環境。然而,四級銨鹽為基礎之室溫離子液體只需要運用簡單的物理混合就可以製備,同時也具備了價格便宜的特點。所以本實驗直接利用數種四級銨鹽(quaternary ammonium salt)和可以提供氫原子(hydrogen bond donor)之醇類以適當的比例混合即可製備出此種離子液體。這一系列的離子液體也具備低蒸氣壓及熱穩定性的優點,所以理當能夠改善傳統液態電解液的缺點。
    將上述的離子液體配製成電解液並進行離子導電度分析、黏度、極限擴散電流密度的測量來了解添加不同濃度的碘對於電解質中離子擴散的速率以及是否能快速地進行氧化還原反應於光電極(TiO2)以及白金對電極之間。為了能再提升整體光電轉換效率的數值,於陽極上添加散射層(scattering layer)以及四氯化鈦後處理(TiCl4 treatment)兩種程序來增加光電流密度(Jsc)。
    由於碘離子本身具有較大的極性易產生聚集,為了能讓碘離子更容易解離;故使用新型四級銨鹽( AcetylCholine Iodide, ACI) 來改善之。其本身陽離子具備不對稱性且不具吸水性的性質進而製備一系列低黏度離子液體。接著改變碘化鋰(LiI)之濃度由0.3M至1.0M的範圍,同時經由單一波長光電轉換效率分析(IPCE)和電化學交流阻抗分析(EIS)的確認可得知在本實驗的最佳條件下,使用有機染料(D-149)在入射光強度為100 mW/cm2下其光電轉換效率(η)可達3.36%、短路電流密度(Jsc)為8.57 (mA/cm2)、開環電壓(Voc)為0.645 V、填充因子(FF)為0.61。在其餘實驗條件設定相同的原則下,使用乙腈為溶劑之液態電解質其轉換效率(η)可達4.3%。故離子液體電解質之效率已經可達到其78%的程度。


    In this thesis, quaternary ammonium salt-based ionic liquids are used to serve as a low-volatility solvent for electrolytes in dye-sensitized solar cells (DSSCs). There are three main advantages for the use of volatile organic solvents for electrolytes, including fast diffusion rates, high ionic conductivities, and low viscosities. However, because of the high volatility of the electrolyte solvent, the cell performance decreases when the solvent vapor leaks.
    In this thesis, a series of quaternary ammonium salts-based ionic liquids are prepared from heating mixtures of quaternary ammonium salts and hydrogen bond donors. This series of liquids has the advantages of cost-effectiveness, easy preparation, low volatility, and excellent ionic conductivity when used as the solvents for electrolytes in DSSCs.
    A new quaternary ammonium salts (Acetylcholine iodide, ACI) is developed in this thesis. When used in DSSCs, constructed from P25 powders and D149 dye
    (a metal-free iodoline dye), the electrolyte gives a Jsc of 8.57 (mA/cm2), a Voc of 0.645 (V), a fill factor of 0.61, and an efficiency of 3.36%, which is 78% of that achieved by using the AN based electrolyte (efficiency of 4.3%) under the same measurement condition.

    總目錄 摘要 I Abstract II 致謝 III 總目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池的發展近況 2 1-3 研究目的與動機 4 第二章 文獻回顧 5 2-1室溫離子液體(ionic liquid) 5 2-1.1離子液體的結構與基本性質 5 2-1.2深共熔點溶劑 (deep eutectic solvent) 8 2-2染料敏化太陽電池 (DSSC) 8 2-2.1染料敏化太陽電池之結構 8 2-2.2染料敏化太陽電池之工作原理 9 2-2.3染料敏化太陽電池光電轉換效率簡介 12 2-2.4提升元件效率的發展策略 12 2-3太陽光性質 13 2-4 電解質的分類與基本性質概述 15 2-4.1電解液的組成與基本特性 15 2-4.2咪唑離子液體(Imidazolium Ionic liquids)為基礎的電解質簡介 16 2-4.3咪唑離子液體的合成 20 2-5不同碳鏈長度的離子液體對於染敏電池效率的影響 21 2-6添加奈米粒子(nanoparticle)進入電解質對於效率的影響 22 2-7電解質中不同的碘濃度對於極限電流、短路電流、光電轉換效率的影響 24 2-8溫度效應對於染敏太陽電池整體的影響 29 2-9離子液體與高分子膠態電解質之長效性測試 31 第三章 實驗方法 34 3-1 實驗藥品 34 3-2 實驗器材 37 3-3 分析儀器 39 3-4 實驗步驟 40 3-4.1 透明導電玻璃基材的清洗程序 40 3-4.2 TiO2漿料的配製與塗佈 41 3-4.3 散射層的製作以及四氯化鈦後處理(TiCl4 treatment) 41 3-4.4 電解質的製備 42 3-4.5 染料敏化太陽能電池的組裝 44 3-4.6 染料敏化太陽能電池的特性量測 44 3-4.6.1 太陽光電轉換效率量測分析 44 3-4.6.2 單一波長光電轉換效率 (Incident Photon-to-Current Conversion Efficiency,IPCE) 45 3-4.7 染料脫附分析 (Dye-loading) 47 3-4.8 電解質的特性分析 47 3-4.8.1 循環伏安法(Cyclic Voltammogram, CV)測定電解質之極限電流 47 3-4.8.2 電解質導電度分析 49 3-4.8.3 電化學交流阻抗分析 ( Electrochemical Impedance Spectroscopy,EIS ) 51 3-5 實驗設計流程 53 第四章 實驗結果與討論 54 4-1 二氧化鈦薄膜之表面分析 54 4-1.1 二氧化鈦薄膜之SEM分析 54 4-1.2 二氧化鈦薄膜之XRD分析 56 4-2四級銨鹽(choline halides based)離子液體之揮發性測試 57 4-2.1 ECC以及ECI 離子液體於55℃的環境 57 4-2.2 ECC以及ECI 離子液體於70℃的環境 58 4-2.3 ACI 離子液體於70℃的環境 59 4-2.4 ACI 離子液體之FTIR圖譜分析 61 4-3 離子液體電解質性質分析 62 4-3.1 極限擴散電流分析 62 4-3.2 電解液離子導電度的分析 70 4-3.3 電解質黏度與導電度、離子擴散係數之關係 75 4-4 離子液體電解質的光電轉換效率分析 77 4-4.1 ECC-type 電解質之光電轉換效率分析 77 4-4.2 ECI-type電解質之光電轉換效率分析 78 4-4.3 ECI-type電解質之光電轉換效率分析 (with scattering layer) 81 4-4.4 ECI-type電解質之光電轉換效率分析 (with TiCl4 treatment) 83 4-4.5 ECI電解質之光電轉換效率分析 (With Scattering layer + TiCl4 treatment) 85 4-4.6 ECI電解質之光電轉換效率分析 (with D-149 Organic Dye) 88 4-4.7 ACI-type電解質之光電轉換效率分析 (一) 89 4-4.8 ACI-type電解質之光電轉換效率分析 (二) 91 4-4.9 ACI-type電解質之光電轉換效率分析 (三) 92 4-5 單一波長光電轉換效率分析 95 4-6 電化學交流阻抗分析 97 4-6.1 ECI-type電解質之交流阻抗分析(With Scattering layer) 97 4-6.2 ECI-type電解質之交流阻抗分析(With TiCl4 treatment) 99 4-6.3 技術整合的薄膜搭配ECI-type電解質之交流阻抗分析(一) 100 4-6.4 技術整合的薄膜搭配ECI-type電解質之交流阻抗分析(二) 101 4-6.5 技術整合的薄膜搭配ACI-type電解質之交流阻抗分析(三) 104 4-6.6 技術整合的薄膜搭配ACI-type電解質之交流阻抗分析(四) 106 4-7 染料敏化太陽電池之長效性測試 109 第五章 結論 112 第六章 參考文獻 114

    Abbott A. P., Capper G., Davies D.L., Rasheed R.K. and Tambyrajah V., “Novel solvent properties of choline chloride/urea mixtures,” Chem. Commun., 70-71(2002)

    Abbott A. P., Boothby D., Capper G., Davies D.L., and Rasheed R.K. “Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids,” J. Am. Chem. Soc 126, 9142-9147 (2004)

    Abbott A. P., Capper G., McKenzie K.J., Ryder K.S. “Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid,” Electrochimica Acta 51, 4420–4425 (2006)

    Abbott A. P., Harris R.C., and Ryder R.S., “Application of Hole Theory to Define Ionic Liquids by their Transport Properties,” J. Phys. Chem. B 111, 4910-4913 (2007)

    Abbott A.P., Cullis P.M., Gibson M.J., Harris R.C. and Raven E., “Extraction of glycerol from biodiesel into a eutectic based ionic liquid” Green Chem 9, 868-872 (2009)

    Arkas M., Tsiourvas D., Paleos C.M., Skoulios A., “Smectic Mesophases from Dihydroxy Derivatives of Quaternary Alkylammonium Salts,” Chem. Eur. 5, (1999)

    Bach U., Lupo D., Comte P., Moser J.E., Weisso¨ rtel F., Salbeck J., Spreitzer H., Gratzel M., “Solid-state dye-sensitized mesoporous TiO2 solar cells
    with high photon-to-electron conversion efficiencies,” Nature Material 395, 583-585 (1998)

    Bai Y.., Cao Y., Zhang J., Wang M., Li R., Wang P., Zakeeruddin S.M. And Gratzel M., “High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts,” Nature Materials 7 (2008)

    Berginc M., Krašovec U.O., Hočevar M., Topič M.,“Performance of dye-sensitized solar cells based on Ionic liquids: Effect of temperature and iodine concentration,” Thin Solid Films 516,7155–7159 (2007)

    Bhattacharya B., Tomar S.K. and Park J.K., “A nanoporous TiO2 electrode and new
    ionic liquid doped solid polymer electrolyte for dye sensitized solar cell application,” Nanotechnology 18 , 485711(2007)

    Cao Y., Zhang J., Bai Y., Li R., Zakeeruddin S.M., Gratzel M., and Wang P., “Dye-Sensitized Solar Cells with Solvent-Free Ionic Liquid Electrolytes,” J. Phys. Chem. C 112 (35), 13775-13781 (2008)

    Gorlov M., and Lars K., * “Ionic liquid electrolytes for dye-sensitized solar cells,” Dalton Trans., 2655–2666 (2008)

    Green M.A., Emery K., Hishikawa Y., Warta W., “Solar Cell Efficiency Tables,” Prog. Photovolt: Res. Appl.16, 61-67 (2008)

    Hsua C.P., Lee K.M., Huang T.W., Lin C.Y., Lee C.H. , Wang L.P., Tsai S.Y., Ho K.C., “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochimica Acta,53,7514~7522 (2008)

    Hee P.K., Park D.W., Dhayal M., Gu H.B., “Electrochemical properties of liquid electrolyte added quasi-solid state TiO2 dye-sensitized solar cells,” Electrochem. Commun., 10,1098-1100 (2008)

    Ishida Y, Miyauchi H. and Saigo K., “Design and synthesis of a novel imidazolium-based ionic liquid with planar chirality” Chem.Commun, 2240-2241, (2002)

    Ito S., Zakeeruddin S.M., Baker R.H., Liska P., Charvet R., Comte P., Nazeeruddin M.K., Pechy P., Takata M., Miura H., Uchida S., and Gratzel M., “High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness,” Adv. Mater, 1202–1205, (2006)

    Jhong H.R., Wong S.H., Wan C.C., Wang Y.Y., Wei T.C. “A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells,” Electrochem. Commun., 11 ,209-211(2008)

    Jovanovski V., Stathatos E., Orel B., Lianos P., “Dye-sensitized solar cells with electrolyte based on a trimethoxysilane-derivatized ionic liquid,” Thin Solid Films 511, 634-637(2006)
    Kuang D., Wang P., Ito S., Zakeeruddin S.M., and Gratzel M. “Stable Mesoscopic Dye-Sensitized Solar Cells Based on Tetracyanoborate Ionic Liquid Electrolyte,” J. Am. Chem. Soc.128, 7732-7733 (2006)

    Kubo W., Kitamura T., Hanabusa K., Wadaa Y. and Yanagida S., “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator,” Chem.Commun , 374-375 ( 2002)

    Kubo W., Makimoto Y., Kitamura T., Wada Y., and Yanagida S., “Quasi-Solid-State Dye-Sensitized Solar Cell with Ionic Polymer Electrolyte,” Chem. Lett., (2002)

    Lan Z, Wu J., Wang D., Hao S., Lin J., Huang Y., “Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly(acrylonitrile-co-styrene)/NaI+I2” Solar Energy 80,1483-1488 (2006)

    Lan Z, Wu J., Lin J., Huang M., Li P., Li Q.,“Influence of ionic additives NaI/I2 on the properties of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells” Electrochimica Acta 53, 2296-2301(2008)

    Lee Y.L., Shen Y.J. and Yang Y.M., “A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications” Nanotechnology 19,455201. (2008)

    Lee K.M., Chen P.Y., Lee C.P., Ho K.C., “Binary room-temperature ionic liquids based electrolytes solidified with SiO2 nanoparticles for dye-sensitized solar cells,” Journal of Power Sources 190, 573–577 (2009)

    Mandal P. K., Paul A. and Samanta A. “Room Temperature Ionic Liquids as Media for Photophysical Studies,” Journal of the Chinese Chemical Society, 53, 247-252 (2006)

    Matsumoto H., Matsuda T., Tsuda T., Hagiwara R.,Ito Y., and Miyazaki Y.,“The Application of Room Temperature Molten Salt with Low Viscosity to the Electrolyte for Dye-Sensitized Solar Cell,” Chem. Lett., 26-27 (2001)

    Nazeeruddin, M. K., Angelis F.D., Fantacci S., Selloni A., Viscardi G., Liska P., Ito S., Takeru B., and Grätzel M., “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” J. Am. Chem. Soc. 127, 16835 (2005)

    O’Regan B., Grätzel M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature Materials, 353, 737 (1991)

    Shi C., Ge Q., Han S., Cai M., Dai S., Xiaqin F., Pan X., “An improved preparation of 1-methyl-3-propylimidazolium iodide and its application in dye-sensitized solar cells” Sol. Energy Mater. Sol. Cells., 82, 385-388 (2008)

    Shi D., Pootrakulchote N., Li R., Guo J., Wang Y., Zakeeruddin S.M., Gra¨tzel M., and Wang P.,“New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes,” J. Phys. Chem. C 112, 44, (2008)

    Tsubomura H., Matsumura M., Nomura Y., Amamiya T., “Dye-Sensitized zinc oxide/aqueous electrolyte/platinum photocell,” Nature Materials 261,402 (1976)

    Wang M., Xiao X., Zhou X., Li X., Lin Y., “ Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells., 91,785-790 (2007)

    Wang P., Zakeeruddin S.M., Moser J.E., Nazeeruddin M.K., Sekiguchi T., and Gratzel M., “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature Materials 2 (2003)

    Wang P., Zakeeruddin S.M., Moser J.E., Gratzel M., “A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells,” J. Phys. Chem. B 107, 13280-13285 (2003)

    Wang P., Wenger B., Baker R.H., Moser J.E., Teuscher J., Kantlehner W., Mezger J., Stoyanov E.V., Zakeeruddin S.M. and Gratzel M., “Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids,” J. Am. Chem. Soc.127, 6850-6856 (2004)

    Wang P., Zakeeruddin S.M., Baker R.H., Gratzel M., “A Binary Ionic Liquid Electrolyte to Achieve 7% Power Conversion Efficiencies in Dye-Sensitized Solar Cells,” Chem. Mater 16, 2694-2696 (2004)

    Xia J.B., Li F.Y., Yang H., Li X. H ., Huang C. H. ” A novel quasi-solid-state dye-sensitized solar cell based on monolayer capped nanoparticles framework materials,” J Mater Sci. 42,6412-6416 (2007)

    Yang H., Yu C., Song Q., Xia Y., Li F., Zhigang C., Li X., Yi T., and Huang C., “High-Temperature and Long-Term Stable Solid-State Electrolyte for Dye-Sensitized Solar Cells by Self-assembly,” Chem. Mater. 18, 5173-5177 (2006)

    Zakeeruddin S. M., Liska P., and Gratzel M., “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid,” Chem. Mater.15, 1825-1829 (2003)

    Zistler M., Wachter P., Wasserscheid P., Gerhard D., Hinsch A., Sastrawan R., Gores H.J. “Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-Stokesian diffusion behaviour in binary mixtures of two ionic liquids” Electrochimica Acta, 52, 161–169 (2006)

    Zakeeruddin S.M. and Gratzel M., “Solvent-Free Ionic Liquid Electrolytes for Mesoscopic Dye-Sensitized Solar Cells” Adv. Funct. Mater 19, 1-16 (2009)

    Zafer C., Ocakoglu K., Ozsoy C., Icli S., “Dicationic bis-imidazolium molten salts for efficient dye sensitized solar cells: Synthesis and photovoltaic properties,” Electrochimica Acta, 54 ,5709-5714 (2009)

    Zhang Z., Ito S., Moser J.E., Zakeeruddin S.M., and Gratzel M., “Influence of Iodide Concentration on the Efficiency and Stability of Dye-Sensitized Solar Cell Containing Non-Volatile Electrolyte,” Chem Phys Chem 10, 1834-1838 (2009)

    Zhou T., and Zhao J., “Synthesis and thermotropic liquid crystalline properties of heterogemini surfactants containing a quaternary ammonium and a hydroxyl group,” Journal of Colloid and Interface Science, 331, 476–483 (2009)

    劉鄃興 “陰離子與濃度對於咪唑鹽類芳香環上氫原子化學位移影響之探討”國立靜宜大學應用化學系碩士論文 (2004)

    簡清旭, “雙咪唑鹽與單咪唑鹽離子液體的合成與性質研究”國立中央大學化學研究所碩士論文 (2006)

    周誌宸, “改善染料敏化太陽能電池二氧化鈦工作電極之研究”國立東華大學化學研究所碩士論文 (2007)

    蔡宗祐, “二氧化鈦光電極微結構對染料敏化太陽能電池效率之影響”國立清華大學化學工程研究所碩士論文 (2009)

    陳盈伸, “氧化鋅奈米柱應用於染料敏化太陽能電池之研究” 國立虎尾科技大學光電與材料科技研究所碩士論文 (2007)

    蔡宜親, “二氧化鈦奈米顯微結構對染料敏化太陽能電池效率影響之研究”國立東華大學材料科學與工程研究所 (2007)

    蔡忠憲, “以二氧化鈦奈米管為前趨物製作染料敏化太陽能電池之陽極電極”國立成功大學化學工程研究所 (2004)

    周啟達, “以紫質及酞花青敏化之二氧化鈦染料敏化太陽能電池研究”國立台灣科技大學化學工程研究所碩士論文 (2006)

    呂怡萱, “二氧化鈦奈米管於染料敏化太陽能池之探討”國立中央大學化學研究所碩士論文 (2006)

    蔡麗娟, “交聯型固態高分子電解質”國立中央大學化學工程研究所碩士論文(2001)

    衛子健, “染料敏化太陽電池之研究”國立清華大學化學工程研究所博士論文(2007)

    鐘惠如, “深共熔溶劑應用於染料敏化太陽能電池之低揮發度電解液之研究”國立清華大學化學工程研究所碩士論文 (2009)

    胡啟章編著, “電化學原理與方法”五南圖書出版公司 (2007)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE